چهارشنبه, ۱۶ خرداد, ۱۴۰۳ / 5 June, 2024
مجله ویستا

پلیمر


پلیمر
تصور جهان پیشرفته کنونی بدون وجود مواد پلیمری مشکل می‌باشد. امروزه این مواد جزیی از زندگی ما شده‌اند و در ساخت اشیای مختلف ، از وسایل زندگی و مورد مصرف عمومی تا ابزار دقیق و پیچیده پزشکی و علمی بکار می‌روند. کلمه پلیمراز کلمه یونانی (Poly) به معنی چند و ( Meros ) به معنای واحد با قسمت بوجود آمده است. در این میان ساختمان پلیمرها با مولکولهای بسیار دراز زنجیر گونه با ساختمان فلزات کامل متفاوت است. این مولکولهای بلند از اتصال و بهم پیوستن هزاران واحد کوچک مولکولی مرسوم به منومر تشکیل شده‌اند. مواد طبیعی مانند ابریشم ، لاک ، قیر طبیعی ، کشانها و سلولز ناخن دارای چنین ساختمان مولکولی هستند.
البته تا اوایل قرن نوزدهم میلادی توجه زیادی به مواد پلیمری نشده بود بومیان آمریکای مرکزی از برخی درختان شیرابه‌هایی استخراج می‌کردند که شیرابه بعدها نام لاتکس به خود گرفت. در سال ۱۸۲۹ ، دانشمندان متوجه شدند که در اثر مخلوط کردن لاتکس طبیعی با سولفور و حرارت دادن آن ماده‌ای قابل ذوب ایجاد می‌شود که می‌توان از آن محصولات مختلفی نظیر چرخ ارابه یا توپ تهیه کرد. در سال ۱۹۰۹ میلادی فنل فرمالدئید موسوم به باکلیت ساخته شد که در تهیه قطعات الکتریکی ، کلیدها ، پریزها و وسایل مصرف زیادی دارد.
در اثنای جنگ جهانی دوم موادی مثل نایلون پلی اتیلن ، اکریلیک موسوم به پرسپکس به دنیا عرضه شد. نئوپرن را شرکت دوپان در سال ۱۹۳۲ ابداع و به شکل تجارتی ابتدا با نام دوپرن و بعدها نئوپرن عرضه کرد.
● شاخه‌های پلیمر
اولین قدم در زمینه صنعت پلاستیک توسط فردی به نام واسپاهیات انجام گرفت وی در تلاش بود ماده‌ای را به جای عاج فیل تهیه کند. وی توانست فرآیند تولید نیترات سلولز را زا سلولز ارائه کند. در دهه ۱۹۷۰ پلیمرهای‌هادی به بازار عرضه شدند که کاربرد بسیاری در صنعت رایانه دارند زیرا مدارها و ICهای رایانه‌ها از این مواد تهیه می‌شوند. و در سالهای اخیر مواد هوشمند پلیمری جایگاه تازه‌ای برای خود سنسورها پیدا کردند. پلیمرها را می‌توان از ۷ دیدگاه مختلف طبقه بندی نمود. صنایع ، منبع ، عبور نور ، واکنش حرارتی ، واکنش‌های پلیمریزاسیون ، ساختمان مولکولی و ساختمان کریستالی.
از نظر صنایع مادر پلیمرها به چهار گروه صنایع لاستیک ، پلاستیک ، الیاف ، پوششی و چسب تقسیم بندی می‌شوند. اینها صنایع مادر در پلیمرها می‌باشند اما صنایع وابسته به پلیمر هم فراوان هستند مانند صنعت پزشکی در اعضای مصنوعی ، دندان مصنوعی ، پرکننده‌ها ، اورتوپدی از پلیمرها به وفور استفاده می‌شود. پلیمرها از لحاظ منبع به سه گروه اصلی تقسیم بندی می‌شوند که عبارتند از پلیمرهای طبیعی ، طبیعی اصلاح شده و مصنوعی.
● رزین
منابع طبیعی رزینها ، حیوانات ، گیاهان و مواد معدنی می‌باشد. این پلیمرها به سادگی شکل پذیر بوده لیکن دوام کمی دارند. رایج عبارتند از روزین ، آسفالت ، تار ، کمربا ، سندروس ، لیگنپین ، لاک شیشه‌ای می‌باشند. رزین‌های طبیعی اصلاح شده شامل سلولز و پروتئین می‌باشد سلولز قسمت اصلی گیاهان بوده و به عنوان ماده اولیه قابل دسترسی برای تولید پلاستیکها می‌باشد کازئین ساخته شده از شیر سرشیر گرفته ، تنها پلاستیک مشتق شده از پروتئین است که در عرصه تجارت نسبتا موفق است.
● پلیمر مصنوعی
پلیمرهای مصنوعی را می‌توان از طریق واکنشهای پلیمریزاسیون بدست آورد. از مواد پلیمری می‌توان در تهیه پلاستیکها ، چسبها ، رنگها ، ظروف عایق ، مواد پزشکی بهره جست. پلاستیکها به تولید طرحهای جدید در اتومبیلها ، کامیونها ، اتوبوسها ، وسایل نقلیه سریع ، هاورکرافت ، قایقها ، ترنها ، آلات موسیقی ، وسایل خانه ، یراق آلات ساختمانی و سایر کاربردها کمک نموده‌اند در ادمه به بررسی کاربرد چندین پلیمر می‌پردازیم:
▪ پلیمرهای بلوری مایع (LCP)
این پلیمرها بتازگی در بین مواد پلاستیکی ظهور کرده است. این مواد از استحکام ابعادی بسیار خوب ، مقاومت بالا ، مقاومت در مقابل مواد شیمیایی توام با خاصیت سهولت شکل پذیری برخوردار هستند. از این پلیمرها می‌توان به پلی اتیلن با چگالی کم قابل مصرف در ساخت عایق الکتریکی ، وسایل خانگی ، لوله و بطریهای یکبار مصرف ، پلی اتیلن با چگالی بالا قابل مصرف در ظروف زباله‌ها بطری ، انواع مخازن و لوله برای نگهداری و انتقال سیالات ، پلی اتیلن شبکهای ، پلی پروپیلن قابل مصرف در ساخت صندوق ، قطعات کوچک خودرو ، اجزای سواری ، اسکلت صندلی ، اتاقک تلویزیون و... اشاره نمود.
▪ پلیمرهای زیست تخریب پذیر
این پلیمرها در طی سه دهه اخیر در تحقیقات بنیادی و صنایع شیمیایی و دارویی بسیار مورد توجه قرار گرفته‌اند. زیست تخریب پذیری به معنای تجزیه شدن پلیمر در دمای بالا طی دوره مشخص می‌باشد که بیشتر پلی استرهای آلیفاتیک استفاده می‌شود. از این پلیمرها در سیستم‌های آزاد سازی دارویی با رهایش کنترل شده یا در اتصالات ، مانند نخ‌های جراحی و ترمیم شکستگی استخوانها و کپسولهای کاشتی استفاده می‌شود.
▪ پلی استایرن
این پلیمر به صورت گسترده‌ای در ساخت پلاتیکها و رزینهایی مانند عایقها و قایقهای فایبر گلاس در تولید لاستیک ، مواد حد واسط رزینهای تعویض یونی و در تولید کوپلیمرهایی مانند ABS و SBR کاربرد دارد. محصولات تولیدی از استایرن در بسته بندی ، عایق الکتریکی - حرارتی ، لوله‌ها ، قطعات اتومبیل ، فنجان و دیگر موادی که در ارتباط با مواد غذایی می‌باشند ، استفاده می‌شود.
▪ لاستیکهای سیلیکون
مخلوط بسیار کانی- آلی هستند که از پلیمریزاسیون انواع سیلابها و سیلوکسانها بدست می‌آیند. با اینکه گرانند ولی مقاومت قابل توجه در برابر گرما به استفاده منحصر از این لاستیکها در مصارف بالا منجر شده است. این ترکیبات اشتغال پذیری نسبتا پایین ، گرانروی کم در درصد بالای رزین ، عدم سمیت ، خواص بالای دی الکتریک ، حل ناپذیری در آب و الکلها و ... دارند به دلیل همین خواص ترکیبات سیلیکون به عنوان سیال هیدرولیک و انتقال گرما ، روان کننده و گریس ، دزدگیر برای مصارف برقی ، رزینهای لایه کاری و پوشش و لعاب مقاوم در دمای بالا و الکلها و مواد صیقل کاری قابل استفاده‌اند. بیشترین مصرف اینها در صنایع هوا فضاست.
▪ لاستیک اورتان
این پلیمرها از واکنش برخی پلی گلیکولها با دی ایزوسیاناتهای آلی بدست می‌آیند. مصرف اصلی این نوع پلیمرها تولید اسفنج انعطاف پذیر و الیاف کشسان است. در ساخت مبلمان ، تشک ، عایق - نوسانگیر و ... بکار می‌روند. ظهور نخ کشسان اسپندکس از جنش پلی یوره تان به دلیل توان بالای نگهداری این نوع نخ زمینه پوشاک ساپورت را دگرگون کرده است.
▪ پلیمریزاسیون
بررسی روشهای بهینه سازی تهیه پلی ایتلن ترفتالات بااستفاده از منابع داخلی
در پروژهء حاضر روشهای تهیه پلی استرها از دیدگاه مکانیسم واکنشها، شرایط مورد نیاز و عوامل موثر برپلیمریزاسیون و همچنین فرآیندهای صنعتی تولید این ترکیبات مهم مورد بررسی قرار گرفته اند و پلی اتیلن ترفتالات (PET) به عنوان یک پلی استر معمول المصرف تحت شرایط متفاوت در مقیاس آزمایشگاهی تهیه شده است. در تهیه (PET) از دی متیل ترفتالات (DMT) واتیلن گلیکول (EG) بعنوان مونومر استفاده شده و پلیمریزاسیون در غیاب حلال و در حالت مذاب در طی دو مرحله ترانس استریفیکاسیون و تراکم انجام گرفته است. برای مرحله اول انواع کاتالیزورهای قلیایی از جمله استات ها و ترفتالاتهای فلزی مورد آزمایش قرار گرفته اند و در مرحله دوم جهت تراکم مونومرها و الیگومرهای اولیه، افزایش جرم مولکولی پلیمر و خروج مازاد اتیلن گلیکول، کاتالیزورهای فلزی مانند اکسیدهای آنتیموان، بیسموت ، روی و غیره مورداستفاده قرار گرفته است. تعمیم نتایج حاصل از روشهای آزمایشگاهی و گسترش آنها در حد پارامترهای تولید نیمه صنعتی و صنعتی می تواند به عنوان اولین قدم در بهبود شرایط تولید وامکان طراحی واحدهای ساده تر و موثرتر در داخل کشور موثر واقع شود. نتایج مقایسه شده از اجرای مرحله اول تحت جریان ازت و مرحله دوم در دمای بالا و خلاء در شرایط متغیر از نظر نوع کاتالیزورها نشان داده است که می توان با تغییر نوع و غلظت این ترکیبات راندومان محصول، جرم مولکولی و کیفیت ظاهری پلیمرهای حاصل را اصلاح نمود. تاثیر افزایش برخی مواد اصلاح کننده که اثر خود را از طریق حذف کاتالیزورهای مرحله اول و یا ورود در زنجیرهای اصلی و جانبی پلیمر اعمال می کنند، مورد مطالعه قرار گرفته است . ساختمان پلیمرهای حاصل از روشهای مختلف از طریق تعیین نقطه ذوب و طیفهای NMR,IR تایید شده وویسکوزیته محلولهای حاصل از آنها تعیین شده است. جرم مولکولی پلیمرها به روش GPC اندازه گیری و آزمایشهای تجزیه ای از قبیل اشتعال و تعیین گروههای انتهایی در حد مقدور انجام گرفته اند. نتایج حاصل حاکی از این است که می توان PET را بنحو مطلوبی از واکنش DMT با EG مازاد )نسبت مولی ۵/۱ برابر( در حضور ترفتالاتهای قلیایی و مدیفایرهای فسفردار با نسبت وزنی حدود (%۵/۰) و همچنین کاتالیزورهای فلزی موثر مانند اکسید آنتیموان در طی دو مرحله متوالی تهیه نمود. بهمزدن مداوم و عبور یک گاز بی اثر باعث تسریع خروج محصولات جانبی مانند متانول و اعمال دما و فشار مناسب باعث تقطیر EG اضافی و افزایش جرم مولکولی می گردد. ترکیبات فسفردار محصولات جانبی مضر مانند استالدهید و استال ها را کاهش می دهد و به حذف بقایای کاتالیزوری مرحله اول کمک می کند. جایگزینی استات ها با ترفتالاتهای فلزی نیز کاتالیز واکنشهای پارازیت در مرحله دوم را تحت الشعاع قرار می دهد.
● پلیمر در صنعت
▪ پلی اتیلن
شیمی یاکرومولکولها(پلیمرها) برای اولین بار توسط مطالعات و تحقیقات پروفسور H.Staudinger در بین دو جنگ جهانی اول و دوم پا به عرصه وجود گذاشت و مانند سایر ایده های نوین با نظریات انتقادی شدید مواجه گشت که اکنون همگی فراموش شده اند مگر آنهایی که از آن پشتیبانی کردند و این علم را به ترقی افتخار آمیز امروز رسانیدند.این علم به کارشناسان شیمی آلی این امکان را داده است که بتوانند تعداد بسیار متنوعی از پلیمرها را از طریق سنتز بدست بیاورند.
اتیلن (اتن) با فرمول H۲C=CH۲ بیشترین حجم را در تولید بسیاری از ترکیبات پتروشیمی دارد.اتیلن سبک ترین الفین است،که گازی بی رنگ، قابل اشتعال و با بویی تقریبا شیرین است.پلی اتیلن پلیمری است که از اتیلن درست می شود.انواع زیادی از پلی اتیلن وجود دارد،تفاوت ها عمدتا از شاخه هایی که طبیعت مواد را تغییر می دهدناشی می شود.در حالت جامد ،وجود شاخه ها و نقص ها سطح کریستالی شدن را کاهش می دهد.
تقسیم بندی اساسی پلی اتیلن عبارت است از:
۱) HDPE پلی اتیلن با دانسیته بالا
۲) LDPE پلی اتیلن با دانسیته پایین
۳) LLDPE پلی اتیلن سبک خطی
۴) VLDPE پلی اتیلن خیلی سبک
۵) COPOLYMERSکوپلیمرهای اتیلن-ونیل استر
۶) IONOMERS یونیمرها
۷) XLPEپلی اتیلن با اتصالات عرضی
رزین های پلی اتیلن با دامنه وسیعی از ویژگی های فیزیکی ،باعث تولید تعداد زیادی از محصولات می شود.
به دلیل آنکه LLDPE نقطه ذوب پایین دارد و از نظر شیمیایی مقاوم است از طریق تکنیک های معمولی قابل تبدیل است.
۱) ساختن فیلم،بیشترین LLDPE تولید شده در جهان به فیلم نازک تبدیل می شود که اعم از دمیدن مذا ب(melt blown)و ریخته گری مذاب است.
۲) شکل دهی تزریقی (Injection molding)،این روش برای تولید موادی با اشکال پیچیده استفاده می شود.ماشین شکل دهی شامل دو قسمت است :یک واحد تزریق (یک رآکتور) و یک واحد clamp (یک قالب)
۳) شکل دهی دمیدنی (Blow molding)،بطری ها و ظرف های ساده در مقادیر زیاد با تکنولوژی شکل دهی دمیدنی ساخته می شود.
۴) شکل دهی چرخشی (rotational molding)،ظرف های بزرگ و بعضی اسباب بازی ها با این روش ساخته می شوند.
۵) اکستروژن (extrusion) کاربرد ها ی اکستروژن شامل pelletization مواد LLDPE پس از ساخت فیلم ضخیم، ورقه، لوله، tubing و سیم های عایق است.
همچنین اکسترود ها ی تکمیل یافته به منظور پوشاندن سیم ها و کابل ها با لایه LLDPE مورد استفاده قرار می گیرند.
بزرگترین بازار فیلم LLDPE بازار کیف است. چون فیلم LLDPE مقاومت کشش بالا دارد و در برابر پارگی مقاوم است قادر است با فیلم HDPE در بسیاری از کاربرد ها رقابت کند. چون کیف های ساخته شده از فیلم های نازک LLDPE مقاومت کششی بسیار عالی، مقاومت در برابر سوراخ شدن و مقاومت مهر شدن ( seal) در فشار های کم را دارد می توانند برای بسته بندی ویا به عنوان کیف جیبی کیف خشک شویی و لباس خشک شویی و کیف یخ مورد استفاده قرار گیرد. حجم مهمی از فیلم LLDPE برای تولید مواد بسته بندی در سایز بزرگ برای غذا ( مثل ساک بقالی) و منسوجات استفاده می شود. ضمنا در صنعت و کشاورزی نیز کاربرد دارد.
قالب‌گیری تزریقی دومین بازار بزرگ LLDPE است. بیش ار نیمی از LLDPE مصرفی در کاربردهای قالب‌ریزی شده، برای سیم منازل استفاده می‌شود.
سیم منازل LLDPE نسبت به LDPE سفت‌تر، دارای مقاومت بیشتر در برابر ضربه و تغییر شکل در دماهای بالا است و قدرت inpact انها در دمای پایین از پلی پرو پیلن برتر است. در نتیجه ظروف ساخته شده از LLDPE جلای خیلی عالی و warpage پایین دارد. به همین ترتیب ظروف زباله و ظروف صنعتی ساخته شده از LLDPE استحکام استثنایی دارد و می تواند در برابر جابه جایی های خشن مقاومت کند. کاربردهای شکل‌دهی تزریقی برای LLDPE با ترکیب یکنواخت(پلاستومر) شامل پوششهای شفاف برای ظروف خانگی و ماسک صورت برای کار با اکسیژن است.
کاربردهای Blow molded , Rotationaly molded ، LLDPE قادر است تا با محصولات گران‌تر از قبیل cross-linked( شبکه‌ای شده) و rubber-modified PE رقابت کنند. بنابر این انواع زیادی از کالا ها از ذرات ترکیب شده (molded) با ساختار پیچیده از رزین های LLDPE ساخته می شود که از جمله می توان اسباب بازی، ظروف بزرگ با لبه‌های گرد، تانک‌های کشاورزی و نگهداری آب را نام برد.
ویژگی‌های LLDPE در ساخت لوله نیز نقش مهمی ایفا می‌کند. لوله های LLDPE نه تنها انعطاف‌پذیری لازم، مقاومت بالا در برابر ترکبدگی و مقاومت در برابر شکست تنش محیطی بالایی دارد، بلکه تغییر شکل حرارتی ان بیشتر از LDPE و بعضی درجه های HDPE است. لوله ی LLDPE برای لوله کشی قطره ای، لوله ی استخر های شنا، لوله های خرطومی منازل و غیره بکار می رود.بدلیل خلوص ،شفافیت و انعطاف پذیری LLDPE (با ترکیب یکنواخت) و VLDPE ،این مواد جایگزین PVC در بعضی کاربردها از جمله کاربردهای دارویی از تیوب شده است.
LLDPE به طور گسترده برای سیم و پوشش کابل در صنعت برق و تلفن استفاده می شود. پوشش به ویژگی هایی از قبیل انعطاف پذیری ،کشش،دمای شکنندگی پایین،مقاومت بالا در برابر خراشیدگی،و خواص دی الکتریک بالا نیازکند است که بزای رزین های PE معمولی است.سیم پوشیده شده با LLDPE بطور گسترده در توزیع برق با ولتاژ پایین ،اتصال کابل های قدرت زیرزمینی،شبکه های ارتباطی و اطلاع رسانی، سیم کشی خودرو و لوازم خانگی به کار می رود.همچنین حجم مهمی از LLDPE در بعضی کاربردهای الکتریکی مثل jacketing,molded accessory panels و ورقه های نیمه هادی استفاده می شود.
نویسنده : مهدی موج بافان
دانشجوی رشته مکانیک