چهارشنبه, ۱۷ بهمن, ۱۴۰۳ / 5 February, 2025
مجله ویستا

پتانسیل کاربرد نانوذرات مغناطیسی در بافت‌های زنده‏


پتانسیل کاربرد نانوذرات مغناطیسی در بافت‌های زنده‏
نانوذرات مغناطیسی برای انتقال دارو درکاربردهای عملی بسیار مورد توجه هستند. این نانوذرات زیست‌سازگار که قابلیت حرکت به سمت یک آهن‌ربا را دارند، به عنوان عوامل‌هایی انتقال دهنده دارو مورد مطالعه هستند. ردیابی سلول‌ها به کمک نانوذرات مغناطیسی قابل رؤیت با MRI، راه جدیدی را برای مشاهده تجربی درمان‌های سلولی ارائه می‌دهد. به هر حال نیاز نیست که همه این ذرات با دوز یکسانی پر شوند. در واقع یافتن نانوذرات مناسب برای کاربردهای خاص می‌تواند پتانسیل‌های این نانوحامل‌ها را آشکار کند.
تا امروز اکسید آهن به دلیل پایداری شیمیایی و تطبیق‌پذیری بیولوژیکی و نیز فرایند تولید نسبتاً ساده نانوذرات مگنتیت (Fe۳O۴) و ماگمیت، (&#۹۴۷;-Fe۲O۳) پزشکی بیشترین توجه را به خود جلب کرده است.
مخلوط‌هایی از این دو نانوذره را می‌توان از طریق رسوب‌دهی آلکالاین‌ها از نمک‌های یون‌های آهن (Fe۲+,Fe۳+)، طی یک فرایند تک‌مرحله‌ای سنتز کرد. این فرایند عموماً در یک محلول آبی از ماکرومولکول‌های خاص انجام می‌گیرد. ماکرومولکول‌ها؛ فرایند رشد هسته‌های ذرات مغناطیسی را از طریق ایجاد پوششی که قابلیت کنترل پراکندگی و به هم چسبیدن ذرات را دارد، کنترل می‌کنند. تست‌های عملی نشان می‌دهد که بازیابی ترکیبات اکسید آهن از چنین مخلوط‌هایی به طور طبیعی و منظم امکان پذیر است. ترکیبات بدن انسان از قبیل پروتئین‌ها، فریتین‌ها، هموسیدرین‌ها، ترنسفریتین و هموگلوبین حاوی سه تا چهار گرم آهن هستند.
هنگامی که نانوذرات مغناطیسی درون بدن، شروع به تجزیه شدن می‌کنندآهن‌های قابل حل وارد مخازن آهن موجود در بدن شده و در آنجا میزان آهن را تنظیم می‌کنند. دوز‌های پزشکی برای بدن احتمالاً از چند میلی‌گرم کمتر است، این در حالی است که احتمال بالاتر بودن این دوز از این حد تقریبا محال می‌نماید.
ذرات نانومتری Fe۳O۴ و - Fe۲O۳ ، در دمای اتاق رفتاری اَبَرپارامغناطیسی از خود نشان می‌دهند. به عبارت دیگر، آنها تحت یک میدان مغناطیسی تا حد زیادی مغناطیده می‌شوند که این مغناطش دائمی نیست و با حذف میدان از بین می‌رود. به کمک این رفتار مغناطیسی نانوذرات اکسید آهن از طریق حمل عوامل‌های درمانی و تحت اعمال یک میدان مغناطیسی می‌توانند توانایی دارورسانی را بدون انحراف مسیر در بدن اصلاح کنند. سوئیچ on/off در این سیستم به معنای بعید بودن احتمال چسبیدن ذرات به یکدیگر در حین فرایند ساخت بوده ویا اینکه این ذرات پس از حذف میدان مغناطیسی به راحتی قابل پراکندگی باشند.
استفاده از نانوذرات مغناطیسی که می‌توانند به دارورسانی کمک کنند، هنوز فاصله زیادی تا مراحل عملی دارد. با این وجود استفاده عملی از ترکیبات Fe۲O۳- /Fe۳O۴ فقط به استفاده از آنها به عنوان عوامل‌های مورد استفاده در تصویربرداری MRI منحصر می‌شود. این عوامل‌ها با تغییر در آهنگ هم‌جهت شدن پروتون‌های آب با میدان مغناطیسی اعمال شده (این میدان از طریق پالس‌هایی با فرکانس رادیوییRF ایجاد می‌گردند به فرایند تصویر برداری کمک می‌کنند. این عوامل‌ها (ذرات اکسید آهن) بر روی زمان تضعیف عرضی (transverse relaxation time) یا همان فرسایشT۲ تأثیر می‌گذارند؛ این امر منجر به ایجاد کنتراست منفی یا نقاط تاریک‌ بر روی تصاویر باردار شده T۲- در MRI می‌گردد. آنها همچنین بر روی تضعیف طولی یا فرسایش T۱ نیز اثر ضعیفی دارند.
این عوامل‌ اگر ذرات مجزای بزرگ‌تر از ۵۰ نانومتر باشند، به صورت اکسید‌های آهن ابر پارامغناطیس (SPIO) رفتار می‌کنند و اگر دارای قطری کوچک‌تر از ۵۰ نانومتر باشند، ذرات اکسید آهن ابرپارامغناطیس فوق ریز هستند (USPIO) . عوامل‌های SPIO بیشتر در تصویربرداری ارگان‌های وابسته به سیستم‌های رتیکولواندوتلیال استفاده می‌شوند؛ در حالی که عوامل‌های کوچک‌تر (USPIO) به خاطر تمایل به جمع شدن در گره‌های لنفاوی، برای تصویربرداری سیستم‌های لنفاتیکی مناسب هستند. با این وجود می‌توان گفت که ذرات اکسید آهن می‌توانند توانایی تصویربرداری بر پایه MR در سیستم‌های سلولی را توسعه دهند.
این کاربرد عملی نوظهور، حوزه کاربرد ابزارهای MRI در تصویربرداری‌های پیشرفته از رفتار‌های سلولی را توسعه می‌دهد.
به عنوان مثال محققان دانشکده داروسازی دانشگاه جونز هاپکینز در بالتی مور، در حال بررسی قوانین موجود در تصویربرداری SPIO با استفاده از سلول‌های دندریتی در محیط بافت‌های بدن هستند. سلول‌های دندریتی بالغ در صورت همراه شدن با آنتی‌ژن یک تومور خاص، می‌توانند در گره‌های لنفاوی عکس العمل حفاظتی ایجاد کنند. به این دلیل این امید است بتوان از آنها به عنوان واکسن سرطان استفاده شوند. تا به امروز آزمایش چنین واکسن‌هایی ناامیدکننده بوده است.
محققان دانشگاه Nijmegen هلند در یک کار گروهی نشان داده‌اند که سلول‌ها لزوماً عامل اصلی سرطان نیستند. تصویربرداری MRI در هشت فرد مبتلاً به نوعی سرطان پوستی (melanoma) به کمک سلول‌های دندریتی نشان‌دار شده با SPIO، مشکلاتی در زمینه روش تزریق اولیه تحت هدایت اولترسونیکی را آشکارساخت. گروه دانشگاهی جونز هاپکینز تصمیم دارند این مشاهدات را تکرار کنند. این فرایند از طریق MR هدایت شده انجام گرفته و با تزریق سلول‌های نشان‌دار شده با SPIO نیز آغاز می‌گردد. آنها از SPIO برای نشان‌دار کردن و ردیابی سلول‌های مغز استخوان سگ و تزریق به داخل بافت قلب استفاده نموده‌اند.
جف بالت، استاد رادیولوژی در جان هاپکینز، می‌گوید: "کسب اطمینان از انتقال صحیح سلول‌ها در همه این درمان‌ها ضروری است، این کار از طریق مشاهده همزمان تزریق هدفمند‌شده در MRI قابل انجام است.
● بیشینه‌سازی مغناطش
آیا نانوذرات اکسید آهن بهترین مواد برای ردیابی سلول‌ها درMR هدایت‌شده هستند؟ به عقیده Taeghwan Hyeon، مدیر تحقیقات ملی سرطان و مواد نانوبلوری اکسیدی در دانشگاه ملی سئول کره، پاسخ این سوال منفی است؛ زیرا کنتراست منفی نانوذرات اکسیدی گاهی اوقات به پس‌زمینه که تا حد زیادی به خود زمینه نزدیک است گسترش یافته، منجر به ایجاد بی‌نظمی‌هایی در تصویر پس‌زمینه یا آرتیفکت‌های شکوفه‌ای شکل بزرگی می‌شود که ساختمان‌های آناتومیک مجاور را تحت تأثیر قرار می‌دهد و این مسئله می‌تواند مانعی بزرگ در استفاده از ذرات SPIO در ردیابی سلول‌های بدن یا سلول‌های پیوندی باشد، زیرا در این موارد مکان دقیق و گسترش سلول‌ها در بدن از عوامل مهم محسوب می‌شود.
به همین دلیل هنوز در مورد مناسب بودن استفاده از Fe۳O۴و Fe۲O۳- &#۹۴۷; در دارورسانی هدفمند مغناطیسی تردید‌هایی وجود دارد.
رفتارهای نانوذرات اکسیدی در میدان مغناطیسی خارجی می‌تواند به افزایش موارد استفاده از آنها در تصویربرداری‌ کمک کند؛ اما آیا واقعاً می‌توان با استفاده از این ویژگی آنها را به‌وسیله نیرو‌های مغناطیسی در بدن جابه‌جا کرد ؟ به نظر Jian-pingWang، استاد مرکز میکرومغناطیس دانشگاه مینسوتا، پاسخ این سوال احتمالاً منفی است، زیرا اشباع مغناطیسی و در نتیجه گشتاور مغناطیسی در واحد حجم نانوذرات SPIO بسیار پایین است. (میزان جذب میدان مغناطیسی پایین خواهد بود.)
بی‌شک افزایش اندازه ذرات به جذب بیشتر میدان مغناطیسی خارجی کمک می‌کند؛ اما افزایش بیش از اندازه ذرات SPIO می‌تواند باعث افزایش احتمال انسداد عروقی شود و خروج این ذرات از بدن را تسریع می‌بخشد. ولی در مقابل، ذرات کوچک‌تر، سطح ویژه نسبتاً بیشتری برای جذب دارند و همین امر میزان حامل‌های مغناطیسی لازم برای دوز مشخصی از دارو را کاهش می‌دهد. علاوه بر این، حامل‌های مغناطیسی احتمالاً راندمان بالاتری در جذب سلولی خواهند داشت، لذا این سؤال مطرح است که چه ماده‌ای در این مسیر مناسب‌تر است ؟
یک راه استفاده از نانوذرات فلزات واسطه است مثل آهن خالص، کبالت و یا ترکیبات و آلیاژهای آنها مثل FeCo است؛ این دسته از نانوذرات فلزی در مقایسه با اکسید آهن، تمایل بیشتری به حفظ گشتاور مغناطیسی و جذب میدان مغناطیسی دارند، (به عنوان مثال اشباع مغناطیسی FeCo به طور چشمگیری بالاست. استفاده از جرم مشابهی از این حامل‌ها در مقایسه با حامل‌های دیگر می‌تواند نیروی پیشران قوی‌ای را ایجاد کرده، و باعث بالارفتن راندمان فرایند دارورسانی ‌شود. در عین حال برای داشتن اثری یکسان از یک میدان مغناطیسی مشخص می‌توان از غلظت کمتر یا ذرات کوچک‌تر از این حامل‌ها استفاده نمود. وانگ می‌گوید: "این مواد می‌توانند استفاده از نانوذرات فوق ریز (شاید کوچک‌تر از پنج یا ده‌ نانومتر) را برای رساندن مولکو ل‌های بسیار کوچک یا حتی قسمتی از DNA ممکن سازند".
به هر حال این دسته از مواد مشکلات خاص خود را دارند به عنوان مثال، سنتز پایدار و تک‌سایز بودن این دسته از نانوذرات فلزی (فلزات واسطه که برای استفاده در محیط‌های آبی نیز مناسب هستند)، با توجه به فعالیتشان چندان ساده به نظر نمی‌رسد. نانوذرات این فلزات در دمای اتاق فرومغناطیس هستند، به این معنی که این مواد با یک بار مغناطیده شدن به طور دائمی و حتی بدون حضور میدان، حالت مغناطیسی خود را حفظ می‌کنند و همین امر باعث افزایش احتمال جذب آنها به یکدیگر می‌شود، این در حالی است که اکسیدهای آهن در حالت قبلی ابرپارامغناطیس بودند.
برخی از محققان در حال جستجو برای یافتن پوششی مناسب برای جلوگیری از جذب و یکی شدن ذرات و همچنین حفظ پایداری شیمیایی آنها هستند، در این مسیر فلزات بی‌اثر مثل طلا، نقره، سیلیکا و لیگاندهای کلاهکی پپتید بسیار مورد توجه هستند. محققان انستیتو علوم نانو (INA) و انستیتو مهندسی مواد Aragone (ICMA) دانشگاه زاراگوزای اسپانیا، در حال بررسی کربن به عنوان گزینه احتمالی برای پوشش مورد نظر نانوذرات فلزات واسطه و تهیه نانوذرات Fe@C به روش تخلیه قوس الکتریکی هستند؛ این روش مشابه فرایند مورد استفاده در تولید نانولوله‌های کربنی و فولرین‌هاست.
تبخیر همزمان آهن و گرافیت در پلاسمای آرگون منجر به تولید ذرات آهن و اکسید آهن پوشیده از مخلوط کربنی با ابعاد متوسط ۲۰۰ نانومتر می‌شود .
تست‌های عملی هماتولوژیکی مقدماتی بر روی نمونه‌های خون انسان و خرگوش‌ها نشان داده که ذرات پوشیده شده با کربن که برای انتقال دارو در شیمی‌درمانی به روش‌های مغناطیسی استفاده می‌شوند، سازگاری زیستی مناسبی با محیط دارند. تخلخل و سطح ویژه بالای این دسته از پوشش‌های معدنی، سرعت جذب سطحی عوامل‌های درمانی را افزایش می‌دهد و تا حد زیادی باعث کاهش سرعت تجزیه سطحی مولکول‌های دارویی می‌شود.این در حالی است که سرعت پر شدن حامل‌های انتقال دارو از مواد دارویی بالاست ولی باید از تخلیه سریع آنها در جریان خون اجتناب شود. به لحاظ نظری می‌توان از کربن برای پوشش‌دهی کبالت نیز استفاده کرد؛ اما محققان در مورد آزمایش این عناصر برای کاربرد‌های عملی نگران هستند، زیرا این مواد بر خلاف آهن چندان در بدن وجود ندارند.
به گفته Nina Matoussevitch که در حال فعالیت در زمینه تولید نانوذرات زیست‌‌سازگار Co، Fe وFeCo انستیتو شیمی مرکز تحقیقات کارلسروهه در آلمان؛ سمی بودن عناصری مانند کبالت، یکی از مهم‌ترین مشکلات دانشمندان در این زمینه است. در این مورد نظریات مختلفی وجود دارد که تا امروز نظریه قانع‌کننده‌ای ارائه نشده است.
Nguyen T. K. Thanh، از دانشگاه لیورپول انگلستان، نسبت به استفاده پزشکی از نانوذرات فلزات واسطه پوشش داده شده مطمئن‌تر به نظر می‌رسد. او می‌گوید: "مقادیر اندک کبالت برای سلامت انسان مفید است. به عنوان مثال، این ترکیب در تشکیل ویتأمین B۱۲ لازم است و از آن در درمان بیماری آنمی استفاده می‌شود. به طور کلی ترکیبات کبالت در بدن دفع شده و جمع نمی‌شوند. "به گفته او دلیلی برای سمی بودن نانوذرات کبالت وجود ندارد و برای پی بردن به این مطلب تحقیقات بیشتری نیاز است.
Urs Hafeli، استادیار دانشکده علوم درمان دانشگاه بریتیش کلمبیا در کانادا، با توجه به اهمیت میزان دقیق مصرف می‌گوید: "همان طور که Paracelsuse، در قرن ۱۶ می‌گوید مقدار ماده سمی بودن آن را تعیین می‌کند. هر چند ممکن است ده‌ها یا هزاران میلیون‌ ذره مغناطیسی در دارورسانی هدفمند استفاده شود، ولی وزن واقعی آنها بسیار کم خواهد بود (احتمال زیاد در حد چند ده میلی‌گرم).
● دارورسانی مؤثر
علی رغم نقاط ضعف و قوت نانوذرات اکسید آهن در کاربردهای عملی، SPIO و USPIO‌ها تنها نانوذرات مغناطیسی تأییدشده برای کاربرد‌های پزشکی هستند. محققان در حال بررسی برای یافتن راهی مناسب برای توسعه روشی بهتر در درمان هدایت‌شده مغناطیسی هستند؛ اما ممکن است موانع موجود را نتوان کاملاً حل کرد، به عنوان مثال یکی از راه‌های رفع مشکل ضعف پاسخ مغناطیسی نانوذرات، بیشینه کردن میدان مغناطیسی در نقطه هدف است.
Lbarra garsia و همکارانش، از طریق نشاندن آهن‌رباهای دائمی از صفحات طلا درون اندام مورد نظر کار مشابهی را انجام دادند.
این فرایند آنها را به استفاده از این حامل‌های مغناطیسی نانومتری در رساندن عوامل‌های شیمی‌درمانی به تومور‌های درون بدن امیدوار ساخته است. مطالعات اساسی در این زمینه به استفاده از ذرات ۲۰ نانومتری Fe@C و یا ۸۰ نانومتری تا دو میکرومتر Fe۲O۳- &#۹۴۷; / Fe۳O۴ پوشیده شده از سیلیکا به عنوان عوامل‌های شیمی‌درمانی نظر دارد. نتایج اولیه تحقیقات در بافت‌های بدن موجودات زنده با نانوذرات پوشیده شده با کربن بر روی خرگوش‌های نیوزلندی، نویدبخش آینده روشنی در این زمینه است. آنالیزهای هیستو پاتولوژیکی توانایی رسیدن حامل‌های مغناطیسی به غده‌های درونی کلیه چپ حیوانات مختلف را تأیید می‌کند، این کار به کمک نشاندن یک آهن‌ربا در نزدیکی نقطه مورد نظر انجام می‌گیرد. می‌توان دید که این آهن‌ربا‌ها را پس از خارج شدن از بدن ذرات مغناطیسی پوشانده‌اند، نکته مهم در این زمینه این است که در کلیه راست این حیوانات هیچ ذره‌ای دیده نشده است.
Garcia Ibarra می‌گوید: "همیشه در آزمایش‌ها مشکلاتی مثل وجود تمرکزی از این نانوذرات در سلول‌های زنده کوپفر کبد، طحال و ریه‌ها هست؛ البته باید توجه داشت که بیشترین محل تمرکز این نانوذرات در جگر است و حا این مسئله به یافتن راهی مناسب برای درمان سرطان است".
مورد دیگر، بهینه‌سازی شکل و قدرت آهن‌ربای خارجی مورد استفاده است که در دانشگاه تگزاس و در مرکز سرطان اندرسون هوستون، با همکاری شرکت NanoBioMagnetics، مورد تحقیق قرار گرفته است.
آنها در حال بررسی واکنش‌های مغناطیسی نانوذرات مورد استفاده در درمان سرطان پیشرفته تخمدان - مرحله سه یا چهار که سلولهای بدخیم به صفاق راه پیدا کرده‌اند- و کنترل عملکرد عوامل‌های شیمی‌درمانی به کمک نانوذرات مغناطیسی دارای پوشش سیلیکا تحت اعمال مستقیم یک آهن‌ربای خارجی (میدان مغناطیسی)، هستند. از فواید پیش‌بینی شده این کار، کم بودن میزان آسیب‌رسانی این نوع دارو‌رسانی هدفمند نسبت به داروهای آزاد است. آزمایش‌های اولیه انجام شده بر روی موش با استفاده از آهن‌ربا‌های استوانه ایG ۵۶ و ۲۲ نانومتر، رسیدن ذرات به داخل حفره‌های مورد نظر را تأیید می‌کنند. مطالعات بعدی در این زمینه نشان داده‌ است که نانوذرات مغناطیسی می‌توانند به سمت غده‌های مورد نظر در فضای پرتونئال (pertoneal) هدایت شوند و برخی از آنها اطراف دیواره‌های شکمی جمع می‌شوند. این اثر ناخواسته را می‌توان با تغییر شکل آهن‌ربای استوانه‌ای به هرمی با عرض سه میلی‌متر و قرار دادن آن روی محل غده کاهش داد .
Jim Klostergaard، استاد آنکولوژی مولکولی سلولی درMD Anderson وسرپرست این مطالعات، می‌گوید: ظاهراً اهمیت در طراحی و انتخاب وسیله انتقال بیماری است. در مواردی که هر دو عامل فوق موفقیت‌آمیز نبوده‌اند، احتمال پیشرفت از مقیاس آزمایشگاهی به کاربردهای کلینیکی نظریه بسیار ضعیف به نظر می‌رسد".
طبق گفته‌های کریستین پلانک (Christian Plank) از انستیتو آزمایشگاهی آنکولوژی، دانشگاه فنی مونیخ آلمان، بهینه‌سازی طراحی آهن‌ربا، تنها راه حفظ خاصیت آهن‌ربایی نیست. وی در حال بررسی این موضوع است که میکروحباب‌های پرشده از گاز هم می‌توانند به افزایش پاسخ‌دهی مغناطیسی عوامل‌های دارورسانی مبتنی بر SPID کمک کنند. در اینجا نظر باید گفت که ذرات می‌توانند با هم و بدون انبوه‌شدن یا مسدود کردن رگ‌های خونی در یک نقطه خاص متمرکز شوند. عملاً آنها معتقدند که قطر متغیر میکروحباب‌ها (از دو تا پنج میکرون) می‌تواند در استفاده از آنها تأثیر مثبتی داشته باشد.
امروه به منظور بهبود تصاویر اولتراسونیک از میکروحباب‌ها در علوم پزشکی استفاده می‌شوند. رزونانس آنها با امواج اولتراسونیکی می‌تواند تصویر محلی که این حباب‌ها در آن قرار دارند را بهبود دهد. در عین حال آزمایش‌های مختلفی برای بررسی قدرت و توانایی میکروحباب‌ها به عنوان عامل دارورسانی در نقاط مختلف بدن مورد ارزیابی قرار گرفته است. به گفته پلانک، بررسی پاسخ‌دهی مغناطیسی میکروحباب‌ها در دارورسانی کاملاً جدید است. دانشمندان و محققان آلمانی در حال استفاده از نانوذرات۲۰۰ تا صد نانومتری حاوی مقدار زیادی Fe۳O۴ هستند؛ این ذرات وارد پوسته‌های لیپیدی از حباب‌های پرشده با C۳F۸ و یک عامل دارویی می‌شوند .
پلانک می‌گوید: "شما نیاز به نانوذراتی با تولید سفارشی دارید که با دیگر اجزای حباب‌ها سازگار باشند. برخی از نانوذرات مغناطیسی مورد استفاده می‌کنیم با مواد شوینده پوشیده شده، می‌توانند با پوسته‌های لیپیدی حباب‌ها شوند. "
به عقیده او آزمایش‌ها حاکی از آن است که ثبات مغناطیسی حباب‌ها بسیار بیشتر از ثبات مغناطیسی دوز مشابه از نانوذرات مغناطیسی آزاد است.
تست‌های عملی نیز نشان داده‌اند که پالس‌های اولتراسونیکل ۱MHz می‌توانند حباب‌ها را ترکانده، باعث آزاد شدن مولکول‌های دارویی یا مواد ژنتیکی درون آنها شود. برای پی‌بردن به این نکته که ساختار عامل درمانی در اثر اعمال اولتراسونیک برای انتقال دارو، ثابت می‌ماند یا خیر، مطالعات بیشتری بر روی حیوانات لازم است.
پلانک می‌گوید: " نگهداری ۱۰۰ درصد کامل در سایت‌های هدف ممکن نخواهد بود. هدف ما این است که با داشتن یک سیستم حامل بتوانیم عوامل‌های فعال را دقیقاً به فرم ساختاری آنها در نقطه مورد نظر و در جایی که هم میدان مغناطیسی و هم اولتراسونیک اعمال می‌شود، انتقال ‌دهیم. این مورد ممکن است در انتقال اسیدهای نوکلئوئیک امکان‌پذیر باشد. "
محققان دانشگاه شیکاگو و لابراتوار ملی آرگونا (Argona)، ایلینویز نیز به رهاسازی دارو به روش هدف‌یابی مغناطیسی با استفاده از اولتراسونیک علاقه‌مند هستند؛ اما نگرش آنها با آنچه پلانک و همکارانش انجام داده‌اند، متفاوت است؛ آنها برای آب‌گریز کردن نانوذرات مغناطیسی، آن را با اسیداولئیک پوشش می‌دهند، سپس آنها را به همراه یک عامل درمانی در یک ماتریس پلیمری قرار می‌دهند.
اکسل روزنگارت، استاد جراحی اعصاب دانشگاه شیکاگو، می‌گوید: "ما هم اکنون قادر به ترکیب مقدار زیادی مگنتیت با حامل‌هایی هستیم که مقدار مغناطیده شده آنها از تمام حامل‌های گزارش شده بیشتر است؛ به این معنا که حامل راحت‌تر به سمت هدف مورد نظر حتی بر خلاف جریان خون حرکت می‌کند. "
همانند قبل، استفاده از اولتراسونیک با شدت خاصی که دانه‌های پلیمری را تشدید کند، منجربه شکسته شدن آنها و آزادسازی عوامل‌های درمانی می‌گردد. روزنگارت و همکارانش می‌خواهند از دانه‌های مغناطیسی برای رساندن عامل حل‌کننده لخته‌های خونی "clot-busting" rt-PA، به محل سکته یا حمله درد در بیماری‌های قلبی، استفاده کنند. او توضیح می‌دهد: "تخلخل لخته‌های خونی به خصوص در معرض امواج اولترسونیکی افزایش می‌یابد که این خود سرعت بررسی افزایش می‌دهد؛ بنابراین استفاده از دارورسانی اولتراسونیک بدون انحراف، هداف دارورسانی rt-PA را در آینده افزایش دهد.
یک دوره مطالعه شش‌ماهه بر روی نمونه‌های موش صحرایی به‌منظور عملی شدن طرح تشخیص در نظر گرفته شده است. روزنگارت می‌گوید: " ما از سه سال گذشته بر روی ساخت حامل‌های مغناطیسی تمرکز کرده، فکر می‌کنیم در پیشرفت و ساخت یک نمونه که به خوبی در محیط بدن عمل خواهد کرد، موفق شده‌ایم. همچنین تحقیقات برای بهبود پایداری rt-PA که فعالیتش با اثرات گرمایی اولتراسونیک کاهش نمی‌یابد، ادامه خواهد یافت".
● آیا این‌ها برای هدف مورد نظر مناسب است؟
اکنون واضح است که نانوذرات مغناطیسی یک‌اندازه و یک ترکیب، برای همه کاربردهای عملی مناسب نیست. به طوری که یک گزینه مناسب برای جلوگیری از گسترش سلول‌های سرطانی متااستاتیک با استفاده از MRI، حتماً یک عامل مناسب برای شیمی درمانی نیست. به گفته Etienne Duguet، استاد انستیتو Bordeux شیمی مواد چگال فرانسه طراحی عوامل‌های مغناطیسی احتیاج به نگرشی مناسب چندبعدی دارد. در این کار سئوالاتی به ذهن می‌رسد؛ اولین سئوال مربوط به ترکیبات هسته است. آیا رفتارهای مغناطیسی آنها مناسب و کافی است ؟ آیا احتمالاً این مواد در دوز تعیین شده سمی هستند؟ یا پوشش وجود دارد؟ برهم‌کنش ذرات پوشش داده شده با سیالات داخل بدن، بیومولکول‌ها و یا سلول‌ها چگونه است؟ آیا مولکول‌های دارویی می‌توانند در جایی که نیاز است بچسبند و رها شوند؟
Urs Hafeli به طراحان پیشنهاد می‌کند که به جای اینکه ابتدا نانوذرات مغناطیسی هوشمند را سنتز کنند و بعد برای آن استفاده‌های عملی را در نظر بگیرند، از کاربرد شروع کرده، مسیر کاری را وارونه طی کنند. هیچ یک از قسمت‌های فرایند دارورسانی نسبت به بخش‌های دیگر آن مهم‌تر نیست. ما نمی‌توانیم همزمان بیشترین خاصیت مغناطیسی ذرات و بهترین ماتریس رهاسازی دارو و ایجاد ذرات کاملاً تک سایز را با هم داشته باشیم. هر دارو و کاربرد‌های مختلف به خاطر نیازمند بودن به هماهنگی با فضای اطراف خود، به خواص شیمی فیزیکی خاصی نیاز دارند؛ ولی باید اشاره کرد که این فضا هنوز کاملاً شناخته شده نیست.
منبع : ستاد ویژه توسعه فناوری نانو