چهارشنبه, ۲۶ دی, ۱۴۰۳ / 15 January, 2025
دمیدن جان در ماشین
بیش از نیم قرن پیش، هنگامی که هنوز هیچ تراشه سیلیکونیای ساخته نشده بود، آلن تورینگ یکی از بحث برانگیزترین پرسشهای فلسفی تاریخ را پرسید. او گفت آیا ماشین میتواند فکر کند و اندکی بعد کوشید به پیروی از این قاعده که هر ادعای علمی باید از بوته آزمایش سربلند بیرون بیاید، پرسش فلسفی خود را با یک آزمایش ساده و در عین حال پیچیده جایگزین کند. او پرسید آیا یک ماشین یک کامپیوتر میتواند بازی تقلید را با موفقیت پشت سر بگذارد. آیا ماشین میتواند از انسان چنان تقلید کند که در یک آزمون محاورهای نتوانیم تفاوت انسان و ماشین را تشخیص دهیم. او در سال ۱۹۵۰ براساس محاسباتی تخمین زد که ۵۰ سال بعد کامپیوتری با یک میلیارد بیت حافظه خواهد توانست به موفقیتهایی در این زمینه دست پیدا کند. اکنون که در نیمه سال ۲۰۰۸ میلادی هستیم، حتی هشت سال بیشتر از زمانی که او لازم دانسته بود، هنوز هیچ ماشینی نتوانسته است از بوته آزمون تورینگ با موفقیت خارج شود. در سال ۲۰۰۰ مفهوم هوش مصنوعی برای هیچکس غیر قابل باور نبود.
در این مقاله نگاهی داریم به سیر تحولاتی که پس از این پرسش تاریخی در دنیای علم و مهندسی بهوقوع پیوستند. یکی از جالبترین و هیجانانگیزترین پرسشهایی که تاکنون تاریخ فلسفه به خود دیده این پرسش است که آلن تورینگ فیلسوف و ریاضیدان انگلیسی در سال ۱۹۵۰ طی مقالهای به نام: Computing Machinery and Intelliqence یا {ماشین محاسباتی و هوشمند} مطرح کرد او پرسید آیا ماشین میتواند فکر کند. خود تورینگ نتوانست پاسخ قطعی این پرسش را پیدا کند. اما برای یافتن پاسخ مناسب در آینده یک راهبرد خلاقانه پیشنهاد کرد.
او آزمونی طراحی کرد که خود، آن را بازی تقلید نامید. او آزمون بازی تقلید را چنین شرح داد: یک پرسشگر- یک انسان- همزمان در حال گفتوگو با دو نفر است. هر یک از این دو نفر در اتاقهای جداگانه قرار گرفتهاند و پرسشگر نمیتواند هیچیک از آنها را ببیند یکی از این دو نفر انسان است و دیگری یک ماشین یعنی یک کامپیوتر. پرسشگر باید با این دو نفر شروع به گفتوگو کند و بکوشد بفهمد کدامیک از این دو، انسان است و کدامیک ماشین. اگر کامپیوتر بتواند طوری جواب دهد که پرسشگر نتواند انسان را از ماشین تمیز دهد آنگاه میتوان ادعا کرد که این ماشین هوشمند است. تورینگ برای آسانکردن شرایط این آزمون و پرهیز از پیچیدگیهای اضافی آن را به محاورهای متنی و روی کاغذ محدود کرد تا مجبور به درگیر شدن با مسائل انحرافی مانند تبدیل متن به گفتار شفاهی و تنظیم تن صدا و لهجه نباشیم.
او همچنین بر اساس یک سری محاسبات پیشبینی کرد که ۵۰ سال بعد یعنی در سال ۲۰۰۰ انسان قادر خواهد بود کامپیوترهایی بسازد که در یک گفتوگوی پنج دقیقهای، فقط ۷۰درصد پرسشگرها بتوانند کشف کنند که در حال گفتوگو با یک انسان هستند یا یک ماشین. او برخورداری از یک میلیارد بیت حافظه (۱۲۵ میلیون بایت- حدود ۱۲۰ مگابایت) را یکی از مشخصههای اصلی این کامپیوتر دانست.
تورینگ همچنین در این مقاله یک سری استدلالهای مخالف با نظریه و آزمون خود را مطرح کرد و کوشید به آنها پاسخ دهد، تصور اینکه ماشینهای هوشمندی ساخته شوند که بتوانند فکر کنند وحشتناک است. تورینگ در پاسخ میگوید این نکتهای انحرافی است، زیرا بحث اصلی او بایدها و نبایدها نیست بلکه بحث درباره ممکنهاست.
دیگر اینکه، ادعا میشود محدودیتهایی درباره نوع پرسشهایی که میتوان از کامپیوتر پرسید وجود دارد، زیرا کامپیوتر از منطق خاصی پیروی میکند. اما تورینگ در پاسخ میگوید: خود انسان هنگام گفتوگو پرغلط ظاهر میشود و نمیتوان گفتار هر انسانی را لزوما منطقی کرد. او پیشبینی کرد که منشأ اصلی هوشمندی ماشین فرضی او، حافظه بسیار زیاد و سریعی است که یک کامپیوتر میتواند داشته باشد. بنابراین از نگاه تورینگ، ماشین همچون کامپیوتر Deep Blue که کاسپاروف، قهرمان شطرنج را شکست داد، میتواند یک ماشین هوشمند تلقی شود. در عین حال تورینگ این نظر را که {آزمون مورد بحث معتبر نیست، زیرا انسان دارای احساسات است و مثلا موسیقی دراماتیک میسازد} رد کرد و گفت: هنوز هیچ سند قابل قبولی وجود ندارد که ثابت کند فقط ما انسانها دارای احساسات هستیم، زیرا مشخص نیست مفهوم دقیق این واژه به لحاظ علمی چیست.
در سال ۱۹۵۶ جان مک کارتی، یکی از نظریهپردازان پیشگام این نظریه در آن زمان، اصطلاح (هوشمند مصنوعی) را برای اولینبار در نخستین کنفرانسی که به این موضوع اختصاص یافته بود، به کار برد. او همچنین زبان برنامهنویس Lisp را ابداع کرد که در همین زمینه کاربرد دارد. دانشمندان بعدا این تاریخ را به عنوان تاریخ تولد علم هوش مصنوعی انتخاب کردند. تقریبا در همان زمان جان فون نیومان نظریه بازیها را معرفی کرد. این نظریه نقش موثری در پیشبرد جنبههای نظری و علمی هوش مصنوعی داشت. چند سال بعد، در سال ۱۹۶۸ آرتور سرکلارک، در رمان معروف خود، یعنی اودیسه فضایی ۲۰۰۱ اصطلاح (آزمون تورینگ) را به جای (بازی تقلید) سر زبانها انداخت. از زمانی که تورینگ این فرضیه را مطرح کرده است، هزاران دانشمند با هدف ساختن ماشینی که بتواند آزمون تورینگ را با موفقیت تمام کند، دست به کار شدهاند. اما هنوز کسی موفق نشده است چنین ماشینی بسازد و پیشبینی تورینگ هم درست از آب در نیامده است.
● چالشهای بنیادین هوش مصنوعی
البته امروزه هوش مصنوعی به واقعیت نزدیک شده است و تقریبا میتوان گفت وجود دارد اما دلایل اصلی متعددی وجود دارد که نشان میدهند چرا هنوز شکل تکامل یافته هوش که تورینگ تصور میکرد، به وقوع نپیوسته است. یکی از مهمترین مباحث مطرح در این زمینه، موضوع شبیهسازی است. غالبا پرسیده میشود آیا صرف اینکه ماشین بتواند نحوه صحبت کردن انسان را شبیهسازی کند، به معنی آن است که هوشمند است؟ به عنوان مثال، شاید شما هم درباره روباتهای نرمافزاری که میتوانند چت کنند چیزهایی شنیده باشید. این روباتها از روشهای تقلیدی استفاده میکنند و به تعبیری نمونه مدرن و اینترنتی آزمون تورینگ هستند. مثلا روبات Eliza یکی از اینهاست. این روبات را ژزف وایزنبام، یکی دیگر از پژوهشگران نامدار این حوزه اختراع کرد. الیزا در برخی مکالمات ساده میتواند طرف مقابل خود را به اشتباه بیندازد طوری که مخاطب ممکن است فکر کند در حال گپزدن با یک انسان است. البته الیزا هنوز نتوانسته است آزمون تورینگ را با موفقیت پشت سر بگذارد.
● شاخههای علم هوش مصنوعی
امروزه دانش مدرن هوش مصنوعی به دو دسته تقسیم میشود:
ا) هوش مصنوعی سمبلیک یا نمادین (Symbolic Ai)
۲) هوش غیر سمبلیک یا پیوندگرا (Connection Ai)
هوش مصنوعی سمبلیک از رهیافتی مبتنی بر محاسبات آماری پیروی میکند و اغلب تحت عنوان «یادگیری ماشین» یا Machune Learning طبقهبندی میشود. هوش سمبلیک میکوشد سیستم و قواعد آن را در قالب سمبلها بیان کند و با نگاشت اطلاعات به سمبلها و قوانین به حل مسئله بپردازد. در میان معروفترین شاخههای هوش مصنوعی سمبلیک میتوان به سیستمهای خبره (Expert Systems) و شبکههایBayesian اشاره کرد. اما هوش پیوندگرا متکی بر یک منطق استقرایی است و از رهیافت «آموزش/ بهبود سیستم از طریق تکرار» بهره میگیرد. این آموزشها نه بر اساس نتایج و تحلیلهای دقیق آماری، بلکه مبتنی بر شیوه آزمون و خطا و «یادگیری از راه تجربه» است. در هوش مصنوعی پیوندگرا، قواعد از ابتدا در اختیار سیستم قرار نمیگیرد، بلکه سیستم از طریق تجربه، خودش قوانین را استخراج میکند. متدهای ایجاد شبکههای عصبی (Network Neural) و نیز به کارگیری منطق فازی (Fuzzy Logic) در این دسته قرار میگیرد.
برای درک بهتر تفاوت میان دو شیوه به یک مثال توجه کنید. فرض کنید میخواهیم یک سیستم OCR بسازیم. سیستم OCR نرمافزاری است که پس از اسکن کردن یک تکه نوشته روی کاغذ میتواند متن روی آن را استخراج کند و به کاراکترهای متنی تبدیل نماید. بدیهی است که چنین نرمافزاری به نوعی هوشمندی نیاز دارد. این هوشمندی را با دو رهیافت متفاوت میتوان فراهم کرد. اگر از روش سمبلیک استفاده کنیم، قاعدتا باید الگوی هندسی تمام حروف و اعداد را در حالتهای مختلف در بانک اطلاعاتی سیستم تعریف کنیم و سپس متن اسکنشده را با این الگوها مقایسه کنیم تا بتوانیم متن را استخراج نماییم.
روش دوم یا متد «پیوندگرا» این است که سیستم هوشمند سمبلیک درست کنیم و متنهای متعددی را یک به یک به آن بدهیم تا آرامآرام آموزش ببیند و سیستم را بهینه کند. در اینجا سیستم هوشمند میتواند مثلا یک شبکه عصبی یا مدل مخفی مارکوف باشد. در این شیوه سمبلها پایه هوشمندی نیستند، بلکه فعالیتهای سلسله اعصاب یک شبکه و چگونگی پیوند میان آنها مبنای هوشمندی را تشکیل میدهند. در طول دهه ۱۹۶۰ و ۱۹۷۰ به دنبال ابداع اولین برنامه نرمافزاری موفق در گروه سیستمهای مبتنی بر دانش (Knowledge- based) توسط جوئل موزس، سیستمهای هوش سمبلیک به یک جریان مهم تبدیل شد. ایده و مدلهای شبکههای عصبی ابتدا در دهه ۱۹۴۰ توسط «Walter pitts, Warren McCulloch» معرفی شد.
سپس در دهه ۱۹۵۰ کارهای روزنبالت (Rosenblatt) در مورد شبکههای دو لایه مورد توجه قرار گرفت. در دهه ۱۹۴۷ الگوریتم backpropagation توسط Werbos معرفی شد ولی متدولوژی شبکههای عصبی عمدتا از دهه ۱۹۸۰ به این سو رشد زیادی کرد و مورد استقبال دانشمندان قرار گرفت. منطق فازی ابتدا توسط پروفسور لطفیزاده، در سال ۱۹۶۵ معرفی شد و از آن زمان به بعد توسط خود او و دیگر دانشمندان دنبال شد.
در دهه ۱۹۸۰ تلاشهای دانشمندان ژاپنی برای کاربردی کردن منطق فازی به ترویج و معرفی منطق فازی کمک زیادی کرد. مثلا طراحی و شبیهسازی سیستم کنترل فازی برای راهآهن Sendia توسط دو دانشمند به نامهای Yasunobo و Miyamoto در سال ۱۹۸۵، نمایش کاربرد سیستمهای کنترل فازی از طریق چند تراشه مبتنی بر منطق فازی در آزمون «پاندول معکوس» توسط Takeshi Yamakawa در همایش بینالمللی پژوهشگران منطق فازی در توکیو در سال ۱۹۸۷ و نیز استفاده از سیستمهای فازی در شبکه مونوریل توکیو و نیز معرفی سیستم ترمز ABS مبتنی بر کنترلهای فازی توسط اتومبیلسازی هوندا در همین دهه تاثیر زیادی در توجه مجدد دانشمندان جهان به این حوزه از علم داشت.
● فراتر از هوشمندی ماشین
چنان که گفتیم، هوش مصنوعی دانش و مهندسی ساختن ماشینهای هوشمند، به ویژه کامپیوترهای هوشمند است. اما بهراستی هوشمند چیست؟ در واقع هنوز دانشمندان نتوانستهاند تعریف واحدی از هوشمندی ارائه دهند که مستقل از «هوش انسان» باشد. ما میدانیم که برخی از ماشینها یا جانداران میتوانند هوشمند باشند، اما بشر هنوز نمیداند که مایل است کدام دسته از فرآیندهای محاسباتی یا پردازش را هوشمندی بنامد. بنابراین برای پاسخ دادن به این پرسش که «آیا فلان ماشین هوشمند است؟» هنوز فرمول مشخصی وجود ندارد، در واقع هوشمندی، خود یک مفهوم فازی و نادقیق است. هوشمندی را میتوان فرآیندی تلقی کرد که دانشمندان هنوز در حال شبیهسازی، تحلیل و حتی تعریف مشخصههای آن هستند.
موضوع مهم دیگر که در ارتباط با هوش مصنوعی مطرح است، هدف دانشمندان از به کارگیری آن است. روشن است که هدف اولیه بشر از ورود به این موضوع، شبیهسازی هوش انسان در کالبد ماشین بوده است. ولی امروزه دیگر چنین نیست و این تصور که هدف علم هوش مصنوعی تنها شبیهسازی هوش انسانی است، تصوری نادرست است. در حقیقت موضوع شبیهسازی هوش انسانی عاملی پیشبرنده در این حوزه از علم است که به دانشمندان انگیزه میدهد تا آن را توسعه دهند، اما در خلال روند توسعه، بشر میتواند به دستاوردهایی برسد که در تمام زمینهها کاربرد دارد. سیستمهای خبره و مبتنی بر دانش نمونهای از این دستاوردهاست. بسیاری از نرمافزارهای موسوم به سیستمهای تصمیمسازی (Decision Making Systems) در شاخه اقتصاد یا سیستمهایی که در تجزیه و تحلیل دادههای پزشکی به کار میروند از این دستاورد بهره میگیرند.
مریم صادقی
ایران مسعود پزشکیان دولت چهاردهم پزشکیان مجلس شورای اسلامی محمدرضا عارف دولت مجلس کابینه دولت چهاردهم اسماعیل هنیه کابینه پزشکیان محمدجواد ظریف
پیاده روی اربعین تهران عراق پلیس تصادف هواشناسی شهرداری تهران سرقت بازنشستگان قتل آموزش و پرورش دستگیری
ایران خودرو خودرو وام قیمت طلا قیمت دلار قیمت خودرو بانک مرکزی برق بازار خودرو بورس بازار سرمایه قیمت سکه
میراث فرهنگی میدان آزادی سینما رهبر انقلاب بیتا فرهی وزارت فرهنگ و ارشاد اسلامی سینمای ایران تلویزیون کتاب تئاتر موسیقی
وزارت علوم تحقیقات و فناوری آزمون
رژیم صهیونیستی غزه روسیه حماس آمریکا فلسطین جنگ غزه اوکراین حزب الله لبنان دونالد ترامپ طوفان الاقصی ترکیه
پرسپولیس فوتبال ذوب آهن لیگ برتر استقلال لیگ برتر ایران المپیک المپیک 2024 پاریس رئال مادرید لیگ برتر فوتبال ایران مهدی تاج باشگاه پرسپولیس
هوش مصنوعی فناوری سامسونگ ایلان ماسک گوگل تلگرام گوشی ستار هاشمی مریخ روزنامه
فشار خون آلزایمر رژیم غذایی مغز دیابت چاقی افسردگی سلامت پوست