جمعه, ۲۱ دی, ۱۴۰۳ / 10 January, 2025
كاربرد نانومواد در صنعت برق
زمانی كه قرن بیستم آغاز شد، افراد معمولی بسیار سخت میتوانستند درك كنند كه خودروها و هواپیماها چگونه كار میكنند. بهرهگیری از انرژی اتمی فقط در حد تئوری وجود داشت و شاید اكنون نیز برای عدهای در ابتدای قرن بیست و یكم بسیار سخت باشد كه باور كنند بشر روبوتهای میكروسكوپی خواهد ساخت و خط مونتاژ میكروسكوپی داشته باشد. تولید چنین محصولات خارقالعادهای حاصل بخشی از دانش بشری است كه به آن نانوتكنولوژی میگویند. بحث نانوتكنولوژی یكی از رایجترین مباحث در مجامع علمی دنیاست و كشورهایی كه نتوانند در این فنآوری موقعیت مناسبی بدست آورند، در آینده در بسیاری زمینهها از گردونه رقابت اقتصادی خارج میشوند چرا كه از جمله مهمترین شاخصههای قابلیت اقتصادی در آینده، توانایی خروج موفقیتآمیز از بحران انرژی است و از نانوتكنولوژی به منزله سلاحی جدید برای مقابله با این بحران یاد میشود.
امروزه از طرفی به دلیل كاهش یافتن منابع اولیه انرژیهای فسیلی در دنیا و از طرف دیگر به دلیل ایجاد آلودگیهای شدید زیستمحیطی در اثر افزایش مصرف این منابع، توجه خاصی به منابع جدید تامین انرژی مانند انرژیهای خورشیدی، بادی و می شود. اما استفاده از این منابع مستلزم دستیابی به تكنولوژی تبدیلكننده این پتانسیلها به انرژیهای الكتریكی، مكانیكی و است. (مثل پیلهای سوختی، سلهای خورشیدی و )
از سوی دیگر، نانو تكنولوژی، به سبب بهبود كیفی ابزارها، مصرف كمتر مواد اولیه، مصرف كمتر انرژی، كاهش تولید مواد زائد و افزایش سرعت تولید در كشورهای پیشرفته به عنوان مهمترین روش تولید و ساخت این ابزارها، مطرح است. همچنین به كمك این فناوری گامهای موثری در جهت كاهش آلودگی زیستمحیطی حاصل از سوختهای فسیلی، برداشته شده است. از این رو از مهمترین بسترهای بكارگیری نانوتكنولوژی در ساخت و تولید مبدلهای انرژیهای نو (مثل سلهای خورشیدی و پیلهای سوختی)، كاهش آلایندههای زیستمحیطی نیروگاههای گازسوز (با استفاده از كاتالیستهای احتراق) و افزایش راندمان این نیروگاهها (با بكارگیری نانوپوششها و نانومگنتها) است.
● پیشرفتهای حاصله در زمینه نانوتكنولوژی (متالورژی)
تكنولوژی مواد، یك تكنولوژی بنیانی در زمینه فنآوری اطلاعات، حفاظت محیط زیست، بهینه سازی مصرف و تولید انرژی است. از سوی دیگر نانوتكنولوژی قابلیت بالایی در اصلاح خواص مواد مورد مصرف و ابداع كاربردهای جدید برای مواد با كنترل ریزساختار آنها در ابعاد بسیار بسیار ریز دارد و از این رو میتوان ظهور آن را یك انقلاب بزرگ در آغاز قرن بیستو یكم دانست. بطور كلی پیشرفتهای حاصل از نانوتكنولوژی در شاخه متالورژی را میتوان به دو دسته تقسیم كرد:
الف) پیشرفتهای حاصله در ساخت و تولید
ب) پیشرفتهای حاصله در تغییر خواص مواد مورد مصرف یه كمك نانوتكنولوژی
● پیشرفتهای حاصله در ساخت و تولید
در شاخه ساخت و تولید، امروزه مهمترین كارهای انجام شده در زمینه تولید نانوذرات ونانوپودرهاست. نانوپودرها موادی هستند كه به علت دارا بودن خواص منحصر به فرد خود در نوع خاصی از تولید بنام «تولید پایین به بالا» مورد استفاده قرار میگیرند. در تولید پایین به بالا به جای اینكه ماده مورد نظر را از تراش دادن ماده تودهای بسازند، آن را از ذرات و مولكولهای تشكیل دهندهاش میسازند. این روش باروش معمولی (تولید از بالا به پایین) بسیار متفاوت است زیرا در تولید معمولی، حجم بسیار زیادی از مواد زاید حاصل از تراش، دور ریخته میشود ولی در تولید پایین به بالا، علاوه بر اینكه چنین مشكلی وجود ندارد، استحكام ماده تولیدی نیز به علت كم شدن نواقص ریزساختاری بالا میرود.
● پیشرفتهای حاصله در بهبود خواص مواد با نانوساختارسازی
محققان و دانشمندان علم مواد و فیزیك بر این باورند كه بسیاری از خواص فیزیكی مواد ارتباط تنگاتنگی با ریزساختار ماده (آرایش اتمی، تركیب شیمیایی و همگنی آرایش كریستالی یك جامد در یك یا دو یا سه بعد) دارد. بدیهی است با پذیرش چنین اصلی میتوانیم انتظار تغییر خواص فیزیكی یك جامد را در اثر تغییر یافتن یكی از پارامترهای مذكور داشته باشیم. در ارتباط با نانومواد گزارشات متعددی در خصوص تغییرات خواص در اثر این تحولات ارایه شده است كه با توجه به كاربردهای بسیار جالب آنها، تلاشهای زیادی جهت درك پدیدههای نوظهور ایجاد شده در حال انجام است. در واقع تغییر در ساختار اتمی مواد، نقش تعیینكنندهای در كنترل خواص مواد نانوساختار دارد. به عنوان مثال كمشدن ابعاد دانه در حد نانونمتر اثر شدیدی بر تولید و حركت نابجائیها و در نتیجه افزایش چشمگیر استحكام تسلیم، سختی و چقرمگی دارد. همچنین مقاومت به سایش و خوردگی مواد نانوساختار از نمونههای معمول بیشتر است.
● ریزساختار نانو مواد
در یك تقسیمبندی كلی انواع مواد نانوساختار میتوانند بر اساس تركیب شیمیایی كریستالیتها یا مرز دانهها، شكل بلوها و در چهار گروه دستهبندی شوند. بر اساس این مدل در سادهترین حالت (گروه اول) كریستالیتها و نواحی مرزی دارای تركیب شیمیایی یكسان هستند. مثل پلیمرهای نیمه هادی كه در آنها لایههای كریستالی روی هم چیده شده، توسط لایههای غیركریستالی جدا میشوند. این كریستالیتها، ساختار كریستالی متفاوت اما تركیب شیمیایی یكسانی دارند.
گروه دوم نیز مشابه گروه اول است، با این تفاوت كه علاوه بر ساختار كریستالی، تركیب شیمیایی كریستالیتها نیز با یكدیگر متفاوت است. حالت سوم حالتی است كه یك كریستالیت غالب وجود دارد كه بین دانههای آن مرزدانه است. در اینحالت یك نوع اتم یا مولكول در نواحی مرزی به گونهای تجمع مییابد كه هم تغییرات ساختاری و هم شیمیایی را به طور مضاعف داشته باشیم. نوع چهارم جامدهای نانوساختار، میتواند بصورت توزیع كریستالهای نانومتری با اشكال مختلف (نظیر صفحهای، میلهای و ) در یك زمینه با تركیب شیمیایی متفاوت پدیدار شود (مثل آلیاژهای رسوب سختی شده)
بدین ترتیب میتوان با اعمال كنترلهای بسیار دقیق، شاهد تاثیرات نانوساختارسازی بر بهبود خواص مواد مورد استفاده بود.
● بكارگیری نانوتكنولوژی در پوشش قطعات داغ توربینهای گازی
قطعات داغ توربینهای گازی زمینی از سوپر آلیاژهای گرانقیمت ساخته میشوند كه دوام خزشی نسبتاً بالایی داشته باشند. هزینه تامین مواد اولیه از یك سو و پیچیدگی روشهای تولید، ماشینكاری و كنترل كیفی از سوی دیگر سبب شده است كه این قبیل قطعات قیمت تمام شده بالایی داشته باشند. قطعات مذكور در تماس مستقیم با گازهای داغ هستند و در اثر عوامل تخریبی مختلفی از جمله سوخت مورد استفاده شوكهای حرارتی و شرایط محیطی آسیب میبینند. آسیبهای وارده به صورت كاهش ضخامت و تضعیف فلز پایه به دلیل خوردگی داغ، اكسیداسیون، فرسایش و پوسته شدن یا افت خواص مكانیكی در اثر نفوذ عوامل مضر به داخل زمینه آلیاژ بروز میكند.
در سه دهه گذشته تلاشهای زیادی برای افزایش مقاومت این آلیاژها انجام شده است تا بدین وسیله افزایش توام استحكام و مقاومت به اكسیداسیون و خوردگی و امكان بالا بردن دما جهت افزایش راندمان توربین فراهم شود و نیز بتوان از سوختهای ناخالصتر و ارزانتر برای احتراق استفاده كرد. افزایش مقاومت به خوردگی آلیاژ، با بهبود تركیب شیمیایی، اصلاح ریزساختار، كنترل دمای كاری و كاهش عوامل خورنده در محیط كاری صورت میگیرد. همچنین افزودن یكسری از عناصر مانند كروم و آلومینیوم سبب افزایش مقاومت به خوردگی و اكسیداسیون میشود. اما افزودن این عناصر سایر خواص آلیاژ مثل استحكام و مقاومت به ضربه رابه شدت كاهش میدهد. از طرفی كاهش دمای كاری توربینها، راندمان را كاهش داده و مقرون به صرفه نخواهد بود. به منظور كاهش عوامل خورنده میتوان از فیلتر كردن سوخت، هوا و استفاده كرد ولی حذف كامل این عوامل امكانپذیر نیست. از این رو جهت برطرف كردن معضلات مذكور، استفاده از پوشش مطرح شده كه فلسفه آن طراحی سیستمی مشتمل از یك آلیاژ با استحكام بالا برای تحمل تنشها و یك پوشش سطحی برای رسیدن به بالاترین خواص حفاظتی در برابر محیط باشد.
از بین پوششهای مرسوم میتوان به پوششهای سرامیكی (تك فاز و كامپوزیتی) و پوششهای كروم سخت اشاره كرد. اما همه این روشها مشكلات مهمی دارند كه باعث محدودیت در استفاده از آنها میشود. آبكاری كروم، همراه با مواد سمی و خطرناك است و رفع آنها هزینه بسیار زیادی میطلبد، از طرف دیگر پوششهای پاشش پلاسمایی سرامیكی، قیمت كمتری نسبت به كروم سخت دارند، اما تردند و چسبندگی خوبی با زمینه ایجاد نمیكنند. از این رو جایگزینی این پوششها با پوششهایی كه این مشكلات را نداشته باشند بسیار مورد توجه است و در بین راههای مختلف، نانوساختارسازی پوششهای سرامیكی از بهترین و جدیدترین شیوهها محسوب میشود.
ایران مسعود پزشکیان دولت چهاردهم پزشکیان مجلس شورای اسلامی محمدرضا عارف دولت مجلس کابینه دولت چهاردهم اسماعیل هنیه کابینه پزشکیان محمدجواد ظریف
پیاده روی اربعین تهران عراق پلیس تصادف هواشناسی شهرداری تهران سرقت بازنشستگان قتل آموزش و پرورش دستگیری
ایران خودرو خودرو وام قیمت طلا قیمت دلار قیمت خودرو بانک مرکزی برق بازار خودرو بورس بازار سرمایه قیمت سکه
میراث فرهنگی میدان آزادی سینما رهبر انقلاب بیتا فرهی وزارت فرهنگ و ارشاد اسلامی سینمای ایران تلویزیون کتاب تئاتر موسیقی
وزارت علوم تحقیقات و فناوری آزمون
رژیم صهیونیستی غزه روسیه حماس آمریکا فلسطین جنگ غزه اوکراین حزب الله لبنان دونالد ترامپ طوفان الاقصی ترکیه
پرسپولیس فوتبال ذوب آهن لیگ برتر استقلال لیگ برتر ایران المپیک المپیک 2024 پاریس رئال مادرید لیگ برتر فوتبال ایران مهدی تاج باشگاه پرسپولیس
هوش مصنوعی فناوری سامسونگ ایلان ماسک گوگل تلگرام گوشی ستار هاشمی مریخ روزنامه
فشار خون آلزایمر رژیم غذایی مغز دیابت چاقی افسردگی سلامت پوست