سه شنبه, ۱۶ بهمن, ۱۴۰۳ / 4 February, 2025
فیزیولوژی گیاهی
فیزیولوژی دانشی است که وظیفهاش بررسی عملکرد (Function) موجودات زنده است. ماهیت بررسی در این علم ، وظیفه و کارکرد اندامهاست. نام قدیمی فیزیولوژی وظایفالاعضا بوده است. فیزیولوژی گیاهی ، مطالعه اعمال حیاتی گیاه ، فرایندهای رشد و نمو ، متابولیزم و تولید مثل گیاهان است.
کشف قوانینی که بر تغذیه گیاه و رشد و نمو آن حکومت میکند، شناخت توانایی واقعی سلولها در انجام فعالیتهای بیولوژیک و همچنین ارائه روشهایی که ظهور یکی از توانائیهای سلولی را امکانپذیر میسازد، هدف اساسی فیزیولوژی گیاهی محسوب میشود. همانطور که مسیر روشن بسیاری از اکتشافات نظری ، منشا پیشرفتهایی در یکی از شاخههای تجربی علوم است، نتایج حاصل از مطالعاتی که در همه شئون علمی بالاخص در فیزیولوژی گیاهی صورت گرفته، باعث توسعه و پیشرفت واقعی کشاورزی شده و آن را از صورت ابتدایی خود در نخستین روزهای ظهور انسان به صورت کاملا پیشرفته امروزی ، مبدل ساخته است.
از طرف دیگر ، ترقیات سریع فیزیولوژی گیاهی نیز خود مدیون ترقیات علوم دیگری مانند فیزیک و شیمی است، زیرا عملا کلیه اعمال متابولیزم سلولها بر اساس قوانینی تفسیر میشوند که در مورد عالم بیجان شناخته شدهاند. شک نیست که علم فیزیولوژی گیاهی ، علمی است تجربی و همه کوششهایی که در این زمینه صورت میگیرند، به شناسایی بیش از پیش ماده زنده منجر میشوند. به علاوه فیزیولوژی گیاهی ، علم پایه مستقلی است که دارای مفاهیم خاصی بوده، شیوه مخصوصی در تجربیات آن مشاهده میشود.
● موضوعات مطرح شده در فیزیولوژی گیاهی
فیزیولوژی گیاهی را میتوان مطالعه اعمال حیاتی گیاه ، فرایندهای چرخهای متحرک رشد ، متابولیزم و تولید مثل دانست. مباحث زیادی در فیزیولوژی گیاهی بحث میشود و در هیچ علمی ، نحوه پیشرفت واضحتر از زمینه فیزیولوژی گیاهی نیست. از مباحثی که در فیزیولوژی گیاهی بحث میشود، میتوان به موارد زیر اشاره کرد.
۱) تغذیه و جذب در گیاهان
انجام صحیح فرایندهای متابولیزمی مستلزم وجود عناصری است که باید به صورت اکسید شده یا احیا شده ، معدنی و یا آلی جذب سلولها شده، احتیاجات آنها را از نظر ماده و انرژی تامین کنند. مقدار و نوع این احتیاجات تابعی از شدت و نوع واکنشهای متابولیزمی بوده و به همین مناسبت هر موجودی از نظر قدرت سنتز و طریقه تحصیل انرژی با موجود دیگر متفاوت است.
موجودات زنده را از نظر قدرت سنتز و همانند سازی به دو دسته اتوتروف و هتروتروف تقسیم می کنند. موجودات اتوتروف موجوداتی را گویند که از ترکیبات سادهای نظیر دیاکسید کربن و ترکیبات معدنی مختلف مانند نیتروژن معدنی ، میتوانند کلیه احتیاجات خود را برطرف سازند که گیاهان در این گروه قرار میگیرند.
۲) احتیاجات گیاهان نسبت به انرژی
سلولهای گیاهی انرژی موجود در مواد تشکیل دهنده خود را به صور مختلف زیر از دست میدهند.
ـ به صورت انرژی حرارتی که در بعضی موارد مانند گل آذین گل شیپوری کاملا آشکار است.
ـ به صورت انرژی نورانی مانند فلورسانس کلروفیل
ـ به صورت انرژی مکانیکی مانند سیکلوز در سیتوپلاسم
ـ به صورت انرژی الکتریکی که نتیجه آن برقراری اختلاف پتانسیل بین اعضای مختلف گیاهان است.
۳) احتیاجات گیاهان نسبت به مواد
میزان این احتیاجات در نمونههای مختلف گیاهی ، متفاوت است. رفع احتیاجات یک گیاه بالغ در درجه اول به منظور جبران موادی است که این گیاه در طول حیات از دست میدهد. در درجه دوم ، رشد و نمو یک گیاه احتیاجات احتمالی دیگری بوجود میآورد. کلیه این احتیاجات بوسیله منابع طبیعی مختلفی تامین میشوند که عبارتند از: خاک ، هوا ، آب و محیطهای آلی.
بطور کلی در بخش تغذیه و جذب مباحث مختلفی بحث میشود: احتیاجات گیاهان ، نقش عمومی و اختصاصی عناصر و علائم کمبودهای آنها ، محلولهای غذایی و کودهای شیمیایی ، تغذیه نیتروژن معدنی و آلی ، چرخه متابولیزمی نیتروژن ، گوگرد و فسفر ، رابطه آب و خاک ، گردش مواد در گیاه ، جذب مواد معدنی ، مکانیزم جذب مواد و.... .
▪ فتوسنتز
فتوسنتز (photosynthesis) از نظر لغوی به معنای تولید با استفاده از نور خورشید است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت میگیرند. طی فتوسنتز انرژی و آب و اکسیژن تولید میشود.
زندگی در روی کره زمین به انرژی حاصل از خورشید وابسته است. فتوسنتز (photosynthesis) از نظر لغوی به معنای تولید با استفاده از نور خورشید است. فتوسنتز شامل دو دسته واکنش است که هردو در کلروپلاستها صورت میگیرند. طی فتوسنتز انرژی و آب و اکسیژن تولید میشود.
در فتوسنتز ، انرژی خورشیدی برای اکسید کردن آب ، آزاد شدن اکسیژن و نیز احیا کردن به ترکیبات آلی و در نهایت قند بکار میرود. فتوسنتز شامل دو دسته از واکنشهاست: واکنشهای نوری و واکنشهای تاریکی.
▪ بطور کلی در بخش فتوسنتز مباحث مختلفی بحث می شود:
مفاهیم کلی در مورد فتوسنتز ، عملکرد کوانتومی نور ، ساختمان دستگاه فتوسنتزی ، ساختار تیلاکوئیدها در کلروپلاست ، گیرندههای نوری ، فتوسیستمهای I و II ، مکانیزم انتقال الکترون و پروتون در کلروپلاستها ، ژنوم کلروپلاست ، چرخه احیای فتوسنتزی ، تنفس نوری ، چرخه احیای فتوسنتزی ، چرخه احیای کربن در گیاهان CAM(کراسولاسه) ، سنتز نشاسته و ساکارز در گیاهان و ... .
▪ رنگدانههای فتوسنتزی
انرژی نور خورشید ابتدا بوسیله رنگدانههای نوری گیاهان جذب میشود. همه رنگدانههایی که در فتوسنتز فعالیت دارند در کلروپلاست یافت میشوند. کلروفیلها و باکترو کلروفیلها که در بعضی از باکتریها یافت میشوند رنگدانههای رایج موجودات فتوسنتز کننده هستند. البته همه موجودات فتوسنتز کننده دارای مخلوطی از بیش از یک رنگدانه هستند که هر کدام عمل خاصی را انجام میدهند. از دیگر رنگدانهها میتوان به کاروتنوئیدها و گرانتوفیل اشاره کرد.
کلروپلاست محلی است که در آن فتوسنتز صورت میگیرد برجستهترین خصوصیت ساختمانی کلروپلاست ، سیستم فشرده غشاهای درونی است که به تیلاکوئید معروف است. کل کلروفیل در این سیستم غشایی که محل واکنش نوری فتوسنتز است قرار گرفته است. واکنشهای احیای کربن یا واکنشهای تاریکی در استروما (ناحیهای از کلروپلاست که بیرون تیلاکوئید قرار گرفته است) صورت میگیرند. تیلاکوئیدها خیلی نزدیک به یکدیگر قرار دارند که به تیغههای گرانا موسومند.
▪ مکانیزم جذب نور در گیرندههای نوری
موجودات فتوسنتز کننده دارای دو مرکز نوری متفاوت هستند که پشت سر هم آرایش یافتهاند و سیستمهای نوری ۱ و ۲ نامیده میشوند. سیستمهای گیرنده در ردههای مختلف موجودات فتوسنتز کننده تفاوت قابل ملاحظهای دارند. در صورتی که مراکز واکنش حتی در موجوداتی که نسبتا اختلاف دارند یکسان است. مکانیزمی که از آن طریق انرژی تحریک کننده از کلروفیل به مرکز واکنش میرسد، اخیرا به صورت انتقال رزونانس از آن یاد شده است. در این فرایند فوتونها به سادگی از یک مولکول کلروفیل دفع و توسط مولکول دیگر جذب نمیشوند. بیشتر انرژی تحریک کننده از طریق فرایند غیر تشعشعی از یک مولکول به مولکول دیگر منتقل میشود.
یک مثال مناسب برای درک فرایند انتقال رزونانس ، انتقال انرژی بین دو رشته سیم تنظیم شده (کوک) است. اگر یکی از رشتهها ضربه بخورد و درست نزدیک دیگری قرار گیرد رشته تنظیم شده دیگر مقداری انرژی از اولی دریافت نموده و شروع به ارتعاش میکند.
کار آیی انتقال انرژی بین دو رشته تنظیم شده به فاصله آنها از یکدیگر ، جهتگیری نسبی آنها و نیز تواترهای ارتعاشی بستگی دارد که مشابه انتقال انرژی در ترکیبات گیرنده است.
▪ واکنشهای نوری فتوسنتز
موجودات فتوسنتز کننده از طریق اکسید کردن آب به مولکول اکسیژن و احیای نیکوتین آمید آدنین دی نوکلئوتید فسفات ، الکترون را به صورت غیر چرخهای منتقل میکنند. بخشی از انرژی فوتون از طریق اختلاف PH و اختلاف پتانسیل الکتریکی در دو طرف غشای فتوسنتزی به صورت انرژی پتانسیل شیمیایی آدنوزین تری فسفات ذخیره میشود. این ترکیبات پر انرژی انرژی لازم برای احیای کربن در واکنشهای تاریکی فتوسنتز را تامین میکنند.
ـ آدنوزین تری فسفات
ـ آدنوزین تری فسفات (ATP)
ـ اطلاعات اولیه
فقدان اکسیژن یکی از خواص مهم جو اولیه به شمار می آید. چنانچه در آن آمیزش برق آسای عناصر اکیسژنی وجود می داشت، مولکولهای ناپایدار حاصل ، به سادگی بر اثر احتراق نابود می شدند. اگر حیات بدون استعانت از اکسیژن حادث شده باشد، باید تخمیر آن را تامین کرد و باشد، که لولی پاستور ، شیمیدان فرانسوی نیز آن را حیات بدون آزمایشهای مربوط به هوا توصیف کرد. عمل تخمیر بر اثر شکستن مولکولهای آلی)ترکیبات حاوی کربن) انرژی لازم را در اختیار یاخته قرار می دهد، فسفاتهای پر انرژی از قبیل آدنوزین تری فسفات را رها می کند.
برخی از اشکال تخمیر ، مانند تخمیر های مواد الکل ، به عنوان فرآورده فرعی ، دی اکسید کربن تولید می کنند. رها شدن این گاز در جو به وسیله اشکال بی هوازی حیات ، که به اکسیژن نیاز دارند، در تکامل فرایند های سوخت و ساز بعدی ، از جمله عمل تنفس سهیم اند.
▪ آدنوزین تری فسفات در مرحله دوم سوخت و ساز
بعد از عمل تخمیر ، پیشرفت بعدی سوخت و ساز عبارت بود از چرخه مونوفسفات ششگانه (HMP). این عمل اساسا فرایندی بی هوازی است که به کمک انرژی حاصل از آدنوزین تری فسفات ، هیدروژن را از قند آزاد می کند. دی اکسید کربن نیز به عنوان فراورده فرعی به دست می آید. نیمی هیدروژن مربوط به چرخه HMP از آب به دست می آید. این چرخه معرف مرحلهای نسبتا پیشرفته (طی میلیونها سال) است، زیرا ، از دشوارترین راه به هیدروژن می رسد، نمایشگر دو روای است که عملا تمامی هیدروژن آزاد از سیاره ها فرار کرده است.
▪ منبع خورشیدی آدنوزین تری فسفات
سومین مرحله در این جریان تکاملی (سوخت و ساز) ، احتمالا تغییر ماده آلی به فسفات آلی به کمک نور (فرایندی که طی آن گیاهان سبز انرژی نورانی را به انرژی شیمیایی تبدیل می کنند) ، یعنی استفاده مستقیم در تولید ATP است. انجام این عمل مستلزم وجود ماده رنگی کلروفیل(پوروفیرین منیزیم) برای جذب نور ، حضور مواد رنگین یاخته)پروتئینهای آهن دار) برای تبدیل انرژی خارجی ، یعنی نور خورشید ، به انرژی ذخیره ای موسوم به (ATP) است.
▪ جذب انرژی خورشیدی
همه موجودات زنده انرژی خود را از نور خورشید کسب می کنند، اما فقط گیاهان سبز می توانند نور خورشید را مستقیما به کار گیرند و با کمک مواد اولیه ساده ای،مانند دی اکسید کربن ، آب و آمونیاک ترکیبات یاخته ای بوجود آورند. این فرایند نور ساخت نامیده می شود. قسمت اعظم موجودات دیگر باید محصولات حاصل ار نور ساخت را به صورت غذا مورد استفاده قرار دهند، یعنی گیاهان استفاده کنند، یا موجوداتی را بخورند که خود با گیاهان تغذیه می شوند.
▪ دلایل واکنشهای شیمیایی ترکیبات غذایی
واکنش های شیمیایی مربوط به ترکیبات غذایی ، شامل پروتئینها ، قندها ، چربیها ، به دو منظور صورت می گیرد، یعنی اینکه مواد پیچیده را به ترکیبات ساده تر تبدیل می کند و ضمن این عمل انرژی مورد نیاز برای انجام فعالیتهای موجودات زنده را فراهم می آورند. موجودات زنده نیز با جذب یا ذخیره انرژی ، مواد پیچیده تری تولید می کنند. فرایند اضمحلال مواد را کاتابولیسم و فرایند ساخت آنها را آنابولیسم می گویند. مجموعه این دو فرایند را متابولیسم می گویند.
▪ نقش موجودات زنده در فرایند تولید انرژی
موجودات زنده نه می توانند انرژی را مصرف کنند نه می توانند آن را به وجود آورند، فقط قادرند انرژی را از حالتی به حالت دیگر تبدیل کنند. انرژی قابل استفاده ، به صورت گرما به طبیعت باز گرداننده می شود. آزمایشهای مربوط به گرما نمی تواند در سیستم های زیستی)هیدروژیکی) کار انرژی را انجام دهد، زیرا همه قسمتهای یاخته اساسا دما و فشار یکنواختی دارند.
نقش آدنوزین تری فسفات در تبدیل انرژی
آدنوزین فسفات که ترکیب شیمیایی خواصی است، در تمام موجودات زنده برای تبدیل انرژی به کار می رود. این ترکیب ، تنها در حالت قابل انرژی در یاخته است. هر یاخته ای را از هر نوع که باشد، میتوان همچون یک لامپ برق دانست. انرژی لازم برای روشن کردن این لامپ می تواند از نفت یا زغال سنگ ، یا هسته اتم ، یا آبشار تامین شود، اما این انرژی چه به حالت گرمایی ، هستهای یا جنبشی باشد، ناگزیر باید به انرژی الکتریکی تبدیل شود.
منابع
۱. فیزیولوژی گیاهی، جلد اول، تالیف تایز وزایگر، ترجمه دکتر محمد کافی، لاهوتی، زند، شریفی، گلدانی، انتشارات جهاد دانشگاهی مشهد، ۱۳۷۸.
۲. فیزیولوژی گیاهی، جلد دوم، تالیف تایز وزایگر، ترجمه دکتر محمد کافی، لاهوتی، زند، شریفی، گلدانی، انتشارات جهاد دانشگاهی مشهد، ۱۳۷۸.
۳. http://daneshnameh.roshd.i
ایران مسعود پزشکیان دولت چهاردهم پزشکیان مجلس شورای اسلامی محمدرضا عارف دولت مجلس کابینه دولت چهاردهم اسماعیل هنیه کابینه پزشکیان محمدجواد ظریف
پیاده روی اربعین تهران عراق پلیس تصادف هواشناسی شهرداری تهران سرقت بازنشستگان قتل آموزش و پرورش دستگیری
ایران خودرو خودرو وام قیمت طلا قیمت دلار قیمت خودرو بانک مرکزی برق بازار خودرو بورس بازار سرمایه قیمت سکه
میراث فرهنگی میدان آزادی سینما رهبر انقلاب بیتا فرهی وزارت فرهنگ و ارشاد اسلامی سینمای ایران تلویزیون کتاب تئاتر موسیقی
وزارت علوم تحقیقات و فناوری آزمون
رژیم صهیونیستی غزه روسیه حماس آمریکا فلسطین جنگ غزه اوکراین حزب الله لبنان دونالد ترامپ طوفان الاقصی ترکیه
پرسپولیس فوتبال ذوب آهن لیگ برتر استقلال لیگ برتر ایران المپیک المپیک 2024 پاریس رئال مادرید لیگ برتر فوتبال ایران مهدی تاج باشگاه پرسپولیس
هوش مصنوعی فناوری سامسونگ ایلان ماسک گوگل تلگرام گوشی ستار هاشمی مریخ روزنامه
فشار خون آلزایمر رژیم غذایی مغز دیابت چاقی افسردگی سلامت پوست