چهارشنبه, ۲۶ دی, ۱۴۰۳ / 15 January, 2025
مجله ویستا

نانو مواد و دسته بندی آن ها


نانو مواد و دسته بندی آن ها

نانوفناوری, توانمندی تولید و ساخت مواد, ابزار و سیستم های جدید با در دست گرفتن کنترل در مقیاس نانومتری یا همان سطوح اتمی و مولکولی, و استفاده از خواصی است که در این سطوح ظاهر می شوند یک نانومتر برابر با یک میلیاردم متر ۱۰ ۹ متر می باشد

نانوفناوری، توانمندی تولید و ساخت مواد، ابزار و سیستم های جدید با در دست گرفتن کنترل در مقیاس نانومتری یا همان سطوح اتمی و مولکولی، و استفاده از خواصی است که در این سطوح ظاهر می شوند. یک نانومتر برابر با یک میلیاردم متر (۱۰-۹ متر) می باشد. این اندازه ۱۸۰۰۰ بار کوچکتر از قطر یک تار موی انسان است. به طور میانگین ۳ تا ۶ اتم در کنار یکدیگر طولی معادل یک نانومتر را می سازند که این خود به نوع اتم بستگی دارد. به طور کلی، فناوری نانو، گسترش، تولید و استفاده از ابزار و موادی است که ابعادشان در حدود ۱-۱۰۰ نانومتر می باشد.

فناوری نانو به سه سطح قابل تقسیم است: مواد، ابزارها و سیستم ها. موادی که در سطح نانو در این فناوری به کار می رود، را نانو مواد می گویند. ماده ی نانو ساختار، به هر ماده ای که حداقل یکی از ابعاد آن در مقیاس نانومتری (زیر ۱۰۰ نانومتر) باشد اطلاق می شود

● خواص نانو مواد

با گذر از مقیاس میکرو به نانو، با تغییر بر خی از خواص فیزیکی و شیمیایی روبه رو می شویم که دو مورد مهم از آنها عبارتند از: افزایش نسبت مساحت سطحی به حجم و ورود اندازه ذره به قلمرو اثرات کوانتومی.

افزایش نسبت مساحت سطحی به حجم که به تدریج با کاهش اندازه ی ذره رخ می دهد، باعث غلبه یافتن رفتار اتم های واقع در سطح ذره به رفتار اتم های درونی می شود. این پدیده بر خصوصیات ذره در حالت انزوا و بر تعاملات آن با دیگر مواد اثر می گذارد. افزایش سطح، واکنش پذیری نانو مواد را به شدت افزایش می دهد زیرا تعداد مولکولها یا اتمهای موجود در سطح در مقایسه با تعداد اتمها یا مولکولهای موجود در توده ی نمونه بسیار زیاد است، به گونه ای که این ذرات به شدت تمایل به آگلومره(agglomeration) یا کلوخه ای شدن دارند. به عنوان مثال در مورد نانوذرات فلزی، به محض قرار گیری در هوا، به سرعت اکسید می شوند. در بعضی مواقع برای حفظ خواص مطلوب نانومواد، جهت پیشگیری از واکنش بیشتر، یک پایدار کننده را بایستی به آنها اضافه کرد که آنها را قادر می سازد تا در برابر سایش، فرسودگی و خوردگی مقاوم باشند.

البته این خاصیت مزایایی هم در بر دارد. مساحت سطحی زیاد، عاملی کلیدی در کارکرد کاتالیزوها و ساختارهایی همچون الکترودها می باشد. به عنوان مثال با استفاده از این خاصیت می توان کارایی کاتالیزورهای شیمیایی را به نحو مؤثری بهبود بخشید و یا در تولید نانوکامپوزیت ها با استفاده از این مواد، پیوندهای شیمیایی مستحکم تری بین ماده زمینه و ذرات برقرار شده و استحکام آن به شدت افزایش می یابد. علاوه بر این، افزایش سطح ذرات، فشار سطحی را کاهش داده و منجر به تغییر فاصله بین ذرات یا فاصله بین اتم های ذرات می شود. تغییر در فاصله بین اتم های ذرات و نسبت سطح به حجم بالا در نانوذرات، تأثیر متقابلی در خواص ماده دارد. تغییر در انرژی آزاد سطح، پتانسیل شیمیایی را تغییر می دهد. این امر در خواص ترمودینامیکی ماده (مثل نقطه ذوب) تأثیر گذار است.

به محض آنکه ذرات به اندازه کافی کوچک شوند، شروع به رفتار مکانیک کوانتومی می کنند. خواص نقاط کوانتومی مثالی از این دست است. نقاط کوانتومی کریستال هایی در اندازه نانو می باشد که از خود نور ساطع می کنند. انتشار نور توسط این نقاط در تشخیص پزشکی کاربرد های فراوانی دارد. این نقاط گاهی اتم های مصنوعی نامیده می شوند؛ چون الکترونهای آزاد آنها مشابه الکترونهای محبوس در اتمها، حالات گسسته و مجازی از انرژی را اشغال می کنند.

علاوه بر این، کوچک تر بودن ابعاد نانوذرات از طول موج بحرانی نور، آنها را نامرئی و شفاف می نماید. این خاصیت باعث شده است تا نانو مواد برای مصارفی چون بسته بندی، مواد آرایشی و روکش ها مناسب باشند.

مواد در مقیاس نانو، رفتار کاملاً متفاوت، نامنظم و کنترل نشده ای از خود بروز می دهند. با کوچکتر شدن ذرات خواص نیز تغییر خواهد کرد. مثلاً فلزات، سخت تر و سرامیک نرم تر می شود دسته بندی نانو مواد مواد در مقیاس نانو به دسته های زیر قابل تقسیم می باشد:

۱) نانو خوشه ها

۲) نانو پوشش ها

۳) نانو لایه ها

۴) نانو سیم ها

۵) نانو لوله ها

۶) نانو حفره ها

۷) نانو ذرات نانو خوشه ها:

در اوایل دهه ۸۰ میلادی، دانشمندان فیزیک کشف کردند که اتم های گازی فلزی به شکل حباب هایی پایدار و با تعداد اتم های مشخصی، مجتمع می شوند. در دهه ۹۰، آنها اثر مشابهی را در کار بر روی سطوح مشاهده کرده اند که اتم های گازی می توانند به شکل خوشه هایی با اندازه های ویژه روی سطح بچسبند. با توجه به تحقیقات و محاسبات، محققین به این نتیجه رسیدند که اتم ها، سطح را برای پیدا کردن مکانی که به کمترین مقدار انرژی برسند جست و جو می کنند. آرایش های ۱ تا ۲ نانومتری از این خوشه ها برای وسایل پیشرفته ی نوری و الکترونیکی مناسب هستند؛ چون الکترون های محبوس شده در این فضاها مجبورند که فوتون هایی با طول موج سفید ایجاد کنند. اگر خوشه ها، دارای خاصیت مغناطیسی شوند، می توانند برای وسایل ذخیره اطلاعات که بسیار فشرده هستند و کاتالیست ها برای واکنش های شیمیایی، استفاده شوند. تصویر شماتیکی از یک نانو خوشه در شکل ۱ مشاهده می شود.

● نانو پوشش ها:

پوشش ها دارای کاربردهای متنوعی از صنایع اتومبیل گرفته تا صنایع لوزام خانگی هستند. این پوشش ها سطوحی را که در معرض آسیب های محیطی مانند باران، برف، نمک ها، رسوب های اسیدی، اشعه ماوراء بنفش، نور آفتاب و رطوبت می باشند را محافظت می نماید. ضمناً پوشش ها قابلیت خش برداشتن، تکه تکه شدن و یا آسیب دیدگی در زمان استفاده، ساخت و حمل و نقل را دارند. با یافتن راه هایی می توان از آسیب دیدن روکش ها جلوگیری کرد. فناوری نانو ایجاد نانو پوشش ها را پیشنهاد می کند.

نانو پوشش های حفاظتی برای افزایش مقاومت در مقابل خوردگی، افزایش سختی سطوح و حفاظت در مقابل عوامل مخرب محیطی می باشند. علاوه بر آن، فناوری نانو از خش برداشتن، تکه تکه شدن و خورده شدن روکش ها جلوگیری می کند. از موارد استفاده نانو پوشش ها می توان به روکش های ضد انعکاس در مصارف خودرو سازی و سازه ای، روکش های محافظ ( ضد خش، غیر قابل رنگ آمیزی، و قابل شستشوی آسان ) و روکش های تزئینی اشاره کرد

● نانو سیم ها

شاید هنوز ساخت تراشه های کامپیوتری که برای ایجاد سرعت محاسباتی بالا به جای جریان الکتریسیته از نور استفاده می کنند، تشخیص انواع سرطان و سایر بیماریهای پیچیده فقط با گرفتن یک قطره خون، بهبود و اصلاح کارت های هوشمند و نمایشگرهای LCD؛ تنها یک رؤیا برایمان باشد و این مسائل را غیر واقعی جلوه دهد اما محققین آینده قادر خواهند بود تمام این رؤیاها را به واقعیت تبدیل کنند و دنیایی جدید از ارتباطات و فناوری را بواسطه معجزه نانوسیم ها به ارمغان آورند.

عموماً سیم به ساختاری گفته می شود که در یک جهت (جهت طولی) گسترش داده شده باشد و در دو جهت دیگر بسیار محدود شده باشد. یک خصوصیت اساسی از این ساختارها که دارای دو خروجی می باشند رسانایی الکتریکی می باشد. با اعمال اختلاف پتانسیل الکتریکی در دو انتهای این ساختارها و در امتداد طولی شان انتقال بار الکتریکی اتفاق می افتد.

ساخت سیمهایی در ابعاد نانومتری، هم از جهت تکنولوژیکی و هم از جهت علمی بسیار مورد علاقه می باشد، زیرا در ابعاد نانومتری خواص غیر معمولی از خود بروز می دهند. نسبت طول به قطر نانوسیم ها بسیار بالا می باشد. ( L>>D )

مثال هایی از کاربرد نانوسیم ها عبارتند از: وسایل مغناطیسی، سنسورهای شیمیایی و بیولوژیکی، نشانگرهای بیولوژیکی و اتصالات داخلی در نانوالکترونیک مانند اتصال دو قطعه ابر رسانای آلومینیومی که توسط نانوسیم نقره صورت می گیرد

● نانولایه ها:

در دنیای کنونی تغییرات سطحی به یک فرایند مهم و اساسی تبدیل شده است. در این مورد روش هایی شامل ایجاد لایه های نازک یا پوشش ها بر روی سطوح، افزایش کارآیی و محافظت سطوح را به دنبال دارد. رسوب یک لایه نازک (نانولایه) برای پوشش دهی در اکثر صنایع جایگاه مهمی یافته است. نانولایه ها دارای یک ساختار نانو ذره ای می باشند که این ساختار یا از توزیع نانوذرات در لایه ایجاد می شود و یا به وسیله یک فرایند کنترل شده، یک نانو ساختار در حین رسوب ایجاد می شود. فیلم های نانویی لایه نازک، که بر روی سطح یک زیر پایه نشانده می شوند کاربردهای عمدتاً الکترونیکی دارند. همانند زیرلایه ها، خازن ها، قطعات حافظه، آشکارسازهای مادون قرمز و راهنماهای موجی نانولوله های کربنی؛ خواص و کاربرد آلوتروپ های کربن تا سال ۱۹۸۰، سه آلوتروپ کربن(کربن غیر بلوری) به نام های الماس، گرافیت و کربن بی شکل شناخته شده بودند، اما امروزه می دانیم که خانواده کاملی از سایر اشکال کربن نیز وجود دارند

● آلوتروپهای مختلف کربن

اولین آلوتروپ کربن که در سال ۱۹۸۵ کشف شد، باک مینستر فولرن نام داشت که به نام های دیگر باکی بال و فولرن نیز نامگذاری شده است. فولرن ها مولکول های کروی کربن هستند که به سبب شکل زیبا و خواص شگفت انگیز، توجه بسیاری از دانشمندان را به خود معطوف کرده اند.

آلوتروپ بعدی کربن که در سال ۱۹۹۱ کشف شد، نانولوله(Nano Tube) نام دارد که در این مقاله به آن پرداخته خواهد شد ساختار نانولوله های کربنی در سال ۱۹۹۱ دانشمندی به نام سومیو ایجیما به طور کاملاً اتفاقی، ساختار دیگری از کربن را کشف و تولید کرد که خواص منحصر به فردی دارد. وی در ابتدا این ساختار را نوعی فولرن تصور نمود که در یک جهت کشیده شده است. اما بعدها متوجه شد که این ساختار، خواص متفاوتی از فولرن ها دارد و به همین دلیل آن را، نانولوله ی کربنی نامید.

در یک نانولوله ی کربنی، اتم های کربن در ساختاری استوانه ای آرایش یافته اند. یعنی یک لوله ی توخالی که جنس دیواره اش از اتم های کربن است. آرایش اتم های کربن در دیواره ی این ساختار استوانه ای، دقیقاً مشابه آرایش کربن در صفحات گرافیت است. در گرافیت، شش ضلعی های منظم کربنی در کنار یکدیگر صفحات گرافیت را می سازند. این صفحات کربنی بر روی یکدیگر انباشته می شوند و هر لایه از طریق پیوندهای ضعیف واندوالس به لایه زیرین متصل می شود.

هنگامی که صفحات گرافیت در هم پیچیده می شوند، نانولوله های کربنی را تشکیل می دهند. در واقع، نانولوله ی کربنی، گرافیتی است که به شکل لوله در آمده باشد

● خواص و کاربردهای نانولوله های کربنی

▪ به عنوان تقویت کننده در کامپوزیت ها

نانولوله ها یکی از مستحکم ترین مواد به شمار می روند. این موضوع، کاربرد نانولوله های کربنی را به عنوان ماده ی پرکننده در تولید نانوکامپوزیت ها به خوبی روشن می سازد. کامپوزیت های با پایه نانولوله ی کربنی دارای نسبت استحکام به وزن بالا هستند و مصارف گسترده ای را در صنعت خواهند داشت. استفاده در نمایشگرهای تشعشع میدانی یکی از مشکلات دستگاه های نشر میدان امروزی، عدم پایداری میدان های تولیدی در بازه های زمانی طولانی است. این مشکل را می توان با استفاده از نانولوله کربنی حل نمود. بیش از ۷۰۰ مقاله تحقیقاتی در رابطه با کاربردهای نشر میدان نانولوله های کربنی منتشر شده است. این آمار بیانگر اهمیت موضوع است. برای مثال، مزایای استفاده از نمایشگرهای تولید شده با نانولوله ی کربنی نسبت به نمایشگرهای کریستال مایع، سرعت واکنش بالاتر نسبت به محرک های الکتریکی، مصرف انرژی کمتر، درخشندگی مناسب تر، میدان مغناطیسی پایین در هنگام روشن کردن دستگاه و دمای کاری بالاتر است. بر پایه همین مزیت ها، شرکت هایی مانند سامسونگ و NEC نمایشگرهای رنگی با استفاده از نانولوله کربنی را تولید کرده است. تلویزیون های ساخته شده با این تکنولوژی در اوایل سال ۲۰۰۶ روانه بازار شد. استفاده از نانولوله های تک دیواره در صنعت الکترونیک نانولوله ها به میزان قابل توجهی سخت و قوی بوده و هادی جریان الکتریسیته و گرما می باشند. این خواص سبب استفاده از این مواد در صنعت الکترونیک شده است.

نانولوله های کربنی سیم های مولکولی بزرگی هستند که الکترون می تواند آزادانه در آن حرکت کند و رفتار آنها پیچیده است. در این راستا رفتار نانولوله های چند دیواره بسیار پیچیده تر از تک دیواره است زیرا لایه های کناری روی یکدیگر تأثیر می گذارند. مدل سازی چنین اثراتی از موضاعات تحقیقاتی در حال حاضر می باشد. محققان امیدوارند که ابعاد سیم ها یا قطعات را از طریق جایگزینی با نانولوله به حدود نانومتر یا کمتر برسانند. این قطعات در کنار مدارات الکترونیکی می توانند خیلی سریع تر و با توان کمتر از مدارات کنونی کار کنند.

لامپ های تولید شده با نانولوله های کربنی هزینه تولید کمتری دارند. به علاوه عمر طولانی تر و ثبات رنگ بیشتر نسبت به لامپ های معمولی، از مزایای دیگر این لامپ هاست

● ساختار تو خالی نانولوله و کاربرد به عنوان ذخیره کننده و پیل سوختی

نانولوله ها، ساختارهای کربنی توخالی هستند. بنابراین، امکان قرار دادن مواد خارجی در داخل آنها وجود دارد. به طور مثال، با قرار دادن فلزات درون نانولوله ها می توان خواص الکتریکی این مواد را بهبود بخشید. تحقیقات نشان داده است که نانولوله های باز، مثل یک نی توخالی عمل می کنند. این نی های مولکولی می توانند به وسیله عمل موئینگی و تحت شرایط خاص، برخی عناصر را به درون خود بکشند.

همچنین نانولوله های کربنی برای ذخیره نمودن سوخت های آلکانی و هیدروژن و ایجاد پیل های سوختی نیز مورد بررسی قرار گرفته اند. ذخیره ی هیدروژن در داخل نانولوله های کربنی تک دیواره امکان پذیر است. ظرفیت جذب هیدروژن نانولوله های تک دیواره ساخته شده حدود ۳ تا ۵ درصد وزنی نانولوله هاست. بنابراین در مقایسه با دیگر انواع ذخیره سازهای هیدروژن نظیر سیستم هیدروژن مایع، هیدروژن فشرده، هیدریدهای فلزی و سوپرکربن اکتیو، سیستم نانولوله ای کربنی و خصوصاً نانولوله های تک دیواره، بهترین انتخاب برای اهداف مورد نظر بوده و می تواند به عنوان سیستمی سبک، فشرده، نسبتاً ارزان، ایمن و با قابلیت استفاده مجدد در ذخیره سازی هیدروژن مورد استفاده قرار گیرد.

● ساخت نانوماشین ها با استفاده از نانولوله های کربنی

نانولوله های کربنی همچین برای استفاده در ساخت نانوماشین ها پیشنهاد شده اند. نانولوله ها به طور مناسبی با ساختارهای مختلف جانشین شده اند که می توانند به عنوان محورها در نانو ماشین ها عمل کنند. ممکن است، نانولوله های مختلف با همدیگر تشکیل چرخدنده دهند تا حرکت چرخشی مختلفی را انتقال دهند. این امر از طریق ساختن دنده های چرخدنده (استخلاف ها) بر روی نانولوله ها می تواند انجام شود

● نانو حفره ها:

مواد با اندازه های حفره ای در محدوده نانومتری، کاربردهای صنعتی جالبی را نشان می دهند. به علت ویژگی برجسته آنها با توجه به عایق حرارتی بودن، رهایش مواد کنترل شده و کاربردشان، آنها به عنوان پرکننده هایی برای کاتالیزورها در علم شیمی، مورد توجه زیادی می باشد. یک مثال از مواد نانو متخلخل، آثروسل ها می باشند که از روش شیمیایی سل – ژل تولید می شوند. این گروه از مواد، پتانسیل بالایی در کاتالیست ها، عایق های حرارتی، مواد الکترودی، فیلترهای محیطی و غشاها، به عنوان محل های رهایش داروی کنترل شده دارا می باشند

● نانو ذرات:

نانوذرات از ده ها یا صدها اتم یا مولکول و با اندازه ها و مورفولوژی های مختلف (آمورف، کریستالی، کروی شکل، سوزنی شکل و غیره) ساخته شده است. اغلب نانوذرات که به طور تجاری مورد استفاده قرار می گیرند، به شکل پودر خشک و یا به صورت بخش مایع می باشند. البته نانوذرات ترکیب شده (آمیخته شده) در یک محلول آلی یا آبی که به شکل سوسپانسیون یا خمیری شکل است نیز مورد توجه می باشد. این ذرات در شکل ها و مورفولوژی های گوناگونی یافت می شوند، ساختارهایی از کروی گرفته تا فلسی، ورقه ای، شاخه ای، لوله ای و میله ای

ادریس سلطانی

http://www.edrissoltany.blogfa.com

منابع

۴.قسمتی از نوشته های مریم ملک داراز کتاب

P. A. Montano, G. K. Shenoy, E. E. Alp, W. Schulze, J. Urban, Phys. Rev. Lett. ۵۶, ۱۹۸۶, Page ۲۰۷۶