پنجشنبه, ۴ بهمن, ۱۴۰۳ / 23 January, 2025
مجله ویستا

دودكش خورشیدی راهكاری جدید برای تولید برق از انرژی خورشیدی


دودكش خورشیدی راهكاری جدید برای تولید برق از انرژی خورشیدی

باید توجه داشت كه تكنولوژی دودكش خورشیدی در واقع از سه عنصر اصلی تشكیل شده است كه اولی جمع كننده هوا و عنصر بعدی برج یا همان دودكش و قسمت آخر نیز توربینهای باد آن است

اساساً اگر بخواهید انرژیهای تجدید‌پذیر از كاربرد وسیعی برخوردار شوند باید كه تكنولوژی‌های ارایه شده ساده و قابل اعتماد بوده و برای كشورهای كمتر توسعه یافته نیز مشكلات فنی به همراه نداشته باشد و بتوان از منابع محدود مواد خام آنها نیز استفاده كرد. در مرحله بعدی نیز باید به آب زیاد نیاز نداشته باشد.

در همینجا باید گفت كه تكنولوژی دودكش دارای این شرایط است. بررسیهای اقتصادی نشان داده است كه اگر این نیروگاهها در مقیاس بزرگ (بزرگتر یا مساوی ۱۰۰ مگاوات) ساخته شوند، قیمت برق تولیدی آنها قابل مقایسه با برق نیروگاههای متداول است. این موضوع كافی است كه بتوان انرژی خورشیدی را در مقیاسهای بزرگ نیز به خدمت گرفت.

بر این اساس می‌توان انتظار داشت كه دودكشهای خورشیدی بتوانند در زمینه تولید برق برای مناطق پرآفتاب نقش مهمی را ایفا كنند.

باید توجه داشت كه تكنولوژی دودكش خورشیدی در واقع از سه عنصر اصلی تشكیل شده است كه اولی جمع‌‌كننده هوا و عنصر بعدی برج یا همان دودكش و قسمت آخر نیز توربینهای باد آن است و همه عناصر آن برای قرنها است كه بصورت شناخته شده درآمده‌اند و تركیب آنها نیز برای تولید برق در سال ۱۹۳۱ توسط گونتر مورد بحث قرار گرفته است.

در سال ۸۴-۱۹۸۳ نیز نتایج آزمایشات و بحثهای نمونه‌ای از دودكش خورشیدی كه در منطقه مانزانارس در كشور اسپانیا ساخته شده بود، ارایه شد. در سال ۱۹۹۰ شلایش و همكاران در مورد قابل تعمیم بودن نتایج بدست آمده از این نمونه دودكش بحثی را ارایه كردند.

در سال ۱۹۹۵ شلایش مجدداً این بحث را مورد بازبینی قرار داد. در ادامه در سال ۱۹۹۷ كریتز طرحی را برای قرار دادن كیسه‌های پر از آب در زیر سقف جمع‌آوری كننده حرارت ارایه كرد تا از این طریق انرژی حرارتی ذخیره‌سازی شود.

گانون و همكاران در سال ۲۰۰۰ یك تجزیه و تحلیل برای سیكل ترمودینامیكی ارایه كردند و بعلاوه در سال ۲۰۰۳ نیز مشخصات توربین را مورد تجزیه و تحلیل قرار دادند. در همین سال روپریت و همكاران نتایج حاصل از محاسبات دینامیك سیالاتی و نیز طراحی توربین برای یك دوربین خورشیدی ۲۰۰ مگاواتی را منتشر ساختند.

در سال ۲۰۰۳ دوز سانتوز و همكاران تحلیلهای حرارتی و فنی حاصل از محاسبات حل شده به كمك كامپیوتر را ارایه كردند.

در حال حاضر در استرالیا طرح نیروگاه دودكش خورشیدی با ظرفیت ۲۰۰ مگاوات در مرحله طراحی و اجرا است http://www.enviromission. Com.au. باید گفت كه استرالیا مكان مناسبی برای این فناوری است چون شدت تابش خورشید در این كشور زیاد است. در ثانی زمینهای صاف و بدون پستی و بلندی در آن زیاد است و دیگر اینكه تقاضا برای برق از رشد بالایی برخوردار است ونهایتاً اینكه دولت این كشور خود را به افزایش استفاده از انرژیهای تجدید‌پذیر ملزم كرده است و از این رو به ۹۵۰۰ گیگاوات ساعت برق در سال از منابع تجدید پذیر جدید نیاز دارد.

● اصول كار:

هوا در زیر یك سقف شفاف كه تشعشع خورشیدی را عبور می‌دهد، گرم می‌شود. باید توجه داشت كه وجود این سقف و زمین زیر آن بعنوان یك كلكتور یا جمع‌كننده خورشیدی عمل می‌كند. در وسط این سقف شفاف یك دودكش یا برج عمودی وجود دارد كه هوای زیادی از پایین آن وارد می‌شود. باید محل اتصال سقف شفاف و این برج بصورتی باشد كه منفذی نداشته باشد و اصطلاحاً «هوا بند» شده باشد.

بر همگان روشن است كه هوای گرم چون سبكتر از هوای سرد است به سمت بالای برج حركت می‌كند. این حركت باعث ایجاد مكش در پایین برج می‌شود تا هوای گرم بیشتری را به درون بكشد و هوای سرد پیرامونی به زیر سقف شفاف وارد شود. برای اینكه بتوان این فناوری را بصورت ۲۴ ساعته مورد استفاده قرارداد می‌توان از لوله‌ها یا كیسه‌های پرشده از آب در زیر سقف استفاده كرد. این موضوع بسیار ساده انجام می‌شود یعنی در طول روز آب حرارت را جذب كرده وگرم می‌شود و در طول شب این حرارت را آزاد می‌كند.

قابل ذكر است كه باید این لوله‌ها را فقط برای یكبار با آب پر كرده و به آب اضافی نیازی نیست. بنابراین اساس كار بدین صورت است كه تشعشع خورشیدی در این برج باعث ایجاد یك مكش به سمت بالا می‌شود كه انرژی حاصل از این مكش توسط چند مرحله توربین تعبیه شده در برج به انرژی مكانیكی تبدیل شده و سپس به برق تبدیل می‌شود.

● توان خروجی:

به زبان ساده می‌توان توان خروجی برجهای خورشیدی را بصورت حاصل‌ضرب انرژی خورشیدی ورودی (Qsolar) در راندمان مربوط به جمع‌‌كننده، برج و توربین بیان كرد:

در ادامه سعی می‌شود پارامترهای قابل محاسبه مشخص شوند ودر این راستا باید گفت كه Qsolar را می‌توان بصورت حاصلضرب تشعشع افقی (Gh) درمساحت كلكتور (Acoll) نوشت.

در داخل برج جریان گرمایی ناشی از كلكتور به انرژی سینتیك (بصورت كنوكسیون) و انرژی پتانسیل (افت فشار در توربین) تبدیل می‌شود.

بنابراین متوجه می‌شویم كه اختلاف دانسیته هوا كه ناشی از افزایش دما در كلكتور است، بعنوان یك نیروی محركه عمل می‌كند. هوای سبكتر موجود در برج در قسمت تحتانی و در قسمت فوقانی برج به هوای اطراف متصل است و از این رو باعث ایجاد یك حركت روبه بالا می‌شود. در یك چنین حالتی یك اختلاف فشار بین قسمت پایین برج (خروجی كلكتور) و محیط اطراف ایجاد می‌شود كه فرمول آن بصورت زیر است:

بر این اساس با افزایش ارتفاع برج، ۹۱۶;Ptot افزایش خواهد یافت.

البته این اختلاف فشار را می‌توان (با فرض قابل صرفنظر كردن اتلافهای اصطكاكی) به اختلاف استاتیك و دینامیك تقسیم كرد قابل ذكر است كه اختلاف فشار استاتیك در توربین افت می‌كند و اختلاف فشار دینامیك بیانگر انرژی سینتیك جریان هوا است.

می‌توان بین توان موجود دراین جریان و اختلاف فشار كل و جریان حجمی هوا وقتی كه ۹۱۶;Ps=۰، رابطه‌ای نوشت: راندمان برج را بصورت زیر بیان می‌كنند:در عمل افت فشار استاتیك ودینامیك ناشی از توربین است. در حالتی كه توربین وجود نداشته باشد می‌توان به حداكثر سرعت جریان دست یافت و تمام اختلاف فشار موجود به انرژی سینتیك تبدیل می‌شود:

بر اساس تخمین Boussinesq حداكثر سرعت قابل دسترسی برای جریان جابجایی آزاد بصورت زیر است:

كه دراین فرمول ۹۱۶;T همان افزایش دما بین محیط و خروجی كلكتور (ورودی دودكش) است. معادل زیر بیانگر راندمان برج و پارامترهای موثر در آن است:

بر اساس این نمایش ساده شده در بین پارامترهای دخیل در دودكش خورشیدی، مهمترین عامل در راندمان برج، ارتفاع آن است. مثلاً برای برجی به ارتفاع ۱۰۰۰ متر اختلاف بین محاسبات دقیق و محاسبه تقریبی ارایه شده، قابل صرفنظر كردن است.

با دقت در معادلات (۱)، (۲) و (۳) می‌توان دریافت كه توان خروجی یك دودكش خورشیدی متناسب باسطح كلكتور و ارتفاع برج است.

مشخص شد كه توان تولید برق یك دودكش خورشیدی متناسب با حجم حاصل از ارتفاع برج و سطح كلكتور است یعنی می‌توان با یك برج بلند و سطح كم و یا یك برج كوتاه با سطح وسیع به یك میزان برق تولید كرد. البته اگر اتلاف اصطكاكی وارد معادلات شود دیگر موضوع فوق صادق نیست. با این وجود تا زمانی كه قطر كلكتور بیش از حد زیاد نشود می‌توان از قاعده سرانگشتی فوق استفاده كرد.

● كلكتور:

هوای گرم مورد نیاز برای دودكش خورشیدی توسط پدیده گلخانه‌ای در یك محوطه‌ای كه با پلاستیك یا شیشه پوشانده شده و حدوداً چند متری از زمین فاصله دارد، ایجاد می‌شود. البته با نزدیك شدن به پایه برج، ارتفاع ناحیه پوشانده شده نیز افزایش می‌یابد تا تغییر مسیر حركت جریان هوا بصورت عمودی با كمترین اصطكاك انجام پذیرد.

با اجازه از : مهندس عبدا... مصطفایی


شما در حال مطالعه صفحه 1 از یک مقاله 2 صفحه ای هستید. لطفا صفحات دیگر این مقاله را نیز مطالعه فرمایید.